AgentCourseFinalProject / core_agent.py
Chris Ellerson
initial commit of agent with score of 60
68ed57f
from smolagents import (
CodeAgent,
DuckDuckGoSearchTool,
HfApiModel,
LiteLLMModel,
OpenAIServerModel,
PythonInterpreterTool,
tool,
InferenceClientModel
)
from typing import List, Dict, Any, Optional
import os
import tempfile
import re
import json
import requests
from urllib.parse import urlparse
@tool
def save_and_read_file(content: str, filename: Optional[str] = None) -> str:
"""
Save content to a temporary file and return the path.
Useful for processing files from the GAIA API.
Args:
content: The content to save to the file
filename: Optional filename, will generate a random name if not provided
Returns:
Path to the saved file
"""
temp_dir = tempfile.gettempdir()
if filename is None:
temp_file = tempfile.NamedTemporaryFile(delete=False)
filepath = temp_file.name
else:
filepath = os.path.join(temp_dir, filename)
# Write content to the file
with open(filepath, 'w') as f:
f.write(content)
return f"File saved to {filepath}. You can read this file to process its contents."
@tool
def download_file_from_url(url: str, filename: Optional[str] = None) -> str:
"""
Download a file from a URL and save it to a temporary location.
Args:
url: The URL to download from
filename: Optional filename, will generate one based on URL if not provided
Returns:
Path to the downloaded file
"""
try:
# Parse URL to get filename if not provided
if not filename:
path = urlparse(url).path
filename = os.path.basename(path)
if not filename:
# Generate a random name if we couldn't extract one
import uuid
filename = f"downloaded_{uuid.uuid4().hex[:8]}"
# Create temporary file
temp_dir = tempfile.gettempdir()
filepath = os.path.join(temp_dir, filename)
# Download the file
response = requests.get(url, stream=True)
response.raise_for_status()
# Save the file
with open(filepath, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
return f"File downloaded to {filepath}. You can now process this file."
except Exception as e:
return f"Error downloading file: {str(e)}"
@tool
def extract_text_from_image(image_path: str) -> str:
"""
Extract text from an image using pytesseract (if available).
Args:
image_path: Path to the image file
Returns:
Extracted text or error message
"""
try:
# Try to import pytesseract
import pytesseract
from PIL import Image
# Open the image
image = Image.open(image_path)
# Extract text
text = pytesseract.image_to_string(image)
return f"Extracted text from image:\n\n{text}"
except ImportError:
return "Error: pytesseract is not installed. Please install it with 'pip install pytesseract' and ensure Tesseract OCR is installed on your system."
except Exception as e:
return f"Error extracting text from image: {str(e)}"
@tool
def analyze_csv_file(file_path: str, query: str) -> str:
"""
Analyze a CSV file using pandas and answer a question about it.
Args:
file_path: Path to the CSV file
query: Question about the data
Returns:
Analysis result or error message
"""
try:
import pandas as pd
# Read the CSV file
df = pd.read_csv(file_path)
# Run various analyses based on the query
result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
result += f"Columns: {', '.join(df.columns)}\n\n"
# Add summary statistics
result += "Summary statistics:\n"
result += str(df.describe())
return result
except ImportError:
return "Error: pandas is not installed. Please install it with 'pip install pandas'."
except Exception as e:
return f"Error analyzing CSV file: {str(e)}"
@tool
def analyze_excel_file(file_path: str, query: str) -> str:
"""
Analyze an Excel file using pandas and answer a question about it.
Args:
file_path: Path to the Excel file
query: Question about the data
Returns:
Analysis result or error message
"""
try:
import pandas as pd
# Read the Excel file
df = pd.read_excel(file_path)
# Run various analyses based on the query
result = f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
result += f"Columns: {', '.join(df.columns)}\n\n"
# Add summary statistics
result += "Summary statistics:\n"
result += str(df.describe())
return result
except ImportError:
return "Error: pandas and openpyxl are not installed. Please install them with 'pip install pandas openpyxl'."
except Exception as e:
return f"Error analyzing Excel file: {str(e)}"
class GAIAAgent:
def __init__(
self,
model_type: str = "HfApiModel",
model_id: Optional[str] = None,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
temperature: float = 0.2,
executor_type: str = "local", # Changed from use_e2b to executor_type
additional_imports: List[str] = None,
additional_tools: List[Any] = None,
system_prompt: Optional[str] = None, # We'll still accept this parameter but not use it directly
verbose: bool = False,
provider: Optional[str] = None, # Add provider for InferenceClientModel
timeout: Optional[int] = None # Add timeout for InferenceClientModel
):
"""
Initialize a GAIAAgent with specified configuration
Args:
model_type: Type of model to use (HfApiModel, LiteLLMModel, OpenAIServerModel, InferenceClientModel)
model_id: ID of the model to use
api_key: API key for the model provider
api_base: Base URL for API calls
temperature: Temperature for text generation
executor_type: Type of executor for code execution ('local' or 'e2b')
additional_imports: Additional Python modules to allow importing
additional_tools: Additional tools to provide to the agent
system_prompt: Custom system prompt to use (not directly used, kept for backward compatibility)
verbose: Enable verbose logging
provider: Provider for InferenceClientModel (e.g., "hf-inference")
timeout: Timeout in seconds for API calls
"""
# Set verbosity
self.verbose = verbose
self.system_prompt = system_prompt # Store for potential future use
# Initialize model based on configuration
if model_type == "HfApiModel":
if api_key is None:
api_key = os.getenv("HUGGINGFACEHUB_API_TOKEN")
if not api_key:
raise ValueError("No Hugging Face token provided. Please set HUGGINGFACEHUB_API_TOKEN environment variable or pass api_key parameter.")
if self.verbose:
print(f"Using Hugging Face token: {api_key[:5]}...")
self.model = HfApiModel(
model_id=model_id or "meta-llama/Llama-3-70B-Instruct",
token=api_key,
temperature=temperature
)
elif model_type == "InferenceClientModel":
if api_key is None:
api_key = os.getenv("HUGGINGFACEHUB_API_TOKEN")
if not api_key:
raise ValueError("No Hugging Face token provided. Please set HUGGINGFACEHUB_API_TOKEN environment variable or pass api_key parameter.")
if self.verbose:
print(f"Using Hugging Face token: {api_key[:5]}...")
self.model = InferenceClientModel(
model_id=model_id or "meta-llama/Llama-3-70B-Instruct",
provider=provider or "hf-inference",
token=api_key,
timeout=timeout or 120,
temperature=temperature
)
elif model_type == "LiteLLMModel":
from smolagents import LiteLLMModel
self.model = LiteLLMModel(
model_id=model_id or "gpt-4o",
api_key=api_key or os.getenv("OPENAI_API_KEY"),
temperature=temperature
)
elif model_type == "OpenAIServerModel":
# Check for xAI API key and base URL first
xai_api_key = os.getenv("XAI_API_KEY")
xai_api_base = os.getenv("XAI_API_BASE")
# If xAI credentials are available, use them
if xai_api_key and api_key is None:
api_key = xai_api_key
if self.verbose:
print(f"Using xAI API key: {api_key[:5]}...")
# If no API key specified, fall back to OPENAI_API_KEY
if api_key is None:
api_key = os.getenv("OPENAI_API_KEY")
if not api_key:
raise ValueError("No OpenAI API key provided. Please set OPENAI_API_KEY or XAI_API_KEY environment variable or pass api_key parameter.")
# If xAI API base is available and no api_base is provided, use it
if xai_api_base and api_base is None:
api_base = xai_api_base
if self.verbose:
print(f"Using xAI API base URL: {api_base}")
# If no API base specified but environment variable available, use it
if api_base is None:
api_base = os.getenv("AGENT_API_BASE")
if api_base and self.verbose:
print(f"Using API base from AGENT_API_BASE: {api_base}")
self.model = OpenAIServerModel(
model_id=model_id or "gpt-4o",
api_key=api_key,
api_base=api_base,
temperature=temperature
)
else:
raise ValueError(f"Unknown model type: {model_type}")
if self.verbose:
print(f"Initialized model: {model_type} - {model_id}")
# Initialize default tools
self.tools = [
DuckDuckGoSearchTool(),
PythonInterpreterTool(),
save_and_read_file,
download_file_from_url,
analyze_csv_file,
analyze_excel_file
]
# Add extract_text_from_image if PIL and pytesseract are available
try:
import pytesseract
from PIL import Image
self.tools.append(extract_text_from_image)
if self.verbose:
print("Added image processing tool")
except ImportError:
if self.verbose:
print("Image processing libraries not available")
# Add any additional tools
if additional_tools:
self.tools.extend(additional_tools)
if self.verbose:
print(f"Initialized with {len(self.tools)} tools")
# Setup imports allowed
self.imports = ["pandas", "numpy", "datetime", "json", "re", "math", "os", "requests", "csv", "urllib"]
if additional_imports:
self.imports.extend(additional_imports)
# Initialize the CodeAgent
executor_kwargs = {}
if executor_type == "e2b":
try:
# Try to import e2b dependencies to check if they're available
from e2b_code_interpreter import Sandbox
if self.verbose:
print("Using e2b executor")
except ImportError:
if self.verbose:
print("e2b dependencies not found, falling back to local executor")
executor_type = "local" # Fallback to local if e2b is not available
self.agent = CodeAgent(
tools=self.tools,
model=self.model,
additional_authorized_imports=self.imports,
executor_type=executor_type,
executor_kwargs=executor_kwargs,
verbosity_level=2 if self.verbose else 0
)
if self.verbose:
print("Agent initialized and ready")
def answer_question(self, question: str, task_file_path: Optional[str] = None) -> str:
"""
Process a GAIA benchmark question and return the answer
Args:
question: The question to answer
task_file_path: Optional path to a file associated with the question
Returns:
The answer to the question
"""
try:
if self.verbose:
print(f"Processing question: {question}")
if task_file_path:
print(f"With associated file: {task_file_path}")
# Create a context with file information if available
context = question
file_content = None
# If there's a file, read it and include its content in the context
if task_file_path:
try:
with open(task_file_path, 'r') as f:
file_content = f.read()
# Determine file type from extension
import os
file_ext = os.path.splitext(task_file_path)[1].lower()
context = f"""
Question: {question}
This question has an associated file. Here is the file content:
```{file_ext}
{file_content}
```
Analyze the file content above to answer the question.
"""
except Exception as file_e:
context = f"""
Question: {question}
This question has an associated file at path: {task_file_path}
However, there was an error reading the file: {file_e}
You can still try to answer the question based on the information provided.
"""
# Check for special cases that need specific formatting
# Reversed text questions
if question.startswith(".") or ".rewsna eht sa" in question:
context = f"""
This question appears to be in reversed text. Here's the reversed version:
{question[::-1]}
Now answer the question above. Remember to format your answer exactly as requested.
"""
# Add a prompt to ensure precise answers
full_prompt = f"""{context}
When answering, provide ONLY the precise answer requested.
Do not include explanations, steps, reasoning, or additional text.
Be direct and specific. GAIA benchmark requires exact matching answers.
For example, if asked "What is the capital of France?", respond simply with "Paris".
"""
# Run the agent with the question
answer = self.agent.run(full_prompt)
# Clean up the answer to ensure it's in the expected format
# Remove common prefixes that models often add
answer = self._clean_answer(answer)
if self.verbose:
print(f"Generated answer: {answer}")
return answer
except Exception as e:
error_msg = f"Error answering question: {e}"
if self.verbose:
print(error_msg)
return error_msg
def _clean_answer(self, answer: any) -> str:
"""
Clean up the answer to remove common prefixes and formatting
that models often add but that can cause exact match failures.
Args:
answer: The raw answer from the model
Returns:
The cleaned answer as a string
"""
# Convert non-string types to strings
if not isinstance(answer, str):
# Handle numeric types (float, int)
if isinstance(answer, float):
# Format floating point numbers properly
# Check if it's an integer value in float form (e.g., 12.0)
if answer.is_integer():
formatted_answer = str(int(answer))
else:
# For currency values that might need formatting
if abs(answer) >= 1000:
formatted_answer = f"${answer:,.2f}"
else:
formatted_answer = str(answer)
return formatted_answer
elif isinstance(answer, int):
return str(answer)
else:
# For any other type
return str(answer)
# Now we know answer is a string, so we can safely use string methods
# Normalize whitespace
answer = answer.strip()
# Remove common prefixes and formatting that models add
prefixes_to_remove = [
"The answer is ",
"Answer: ",
"Final answer: ",
"The result is ",
"To answer this question: ",
"Based on the information provided, ",
"According to the information: ",
]
for prefix in prefixes_to_remove:
if answer.startswith(prefix):
answer = answer[len(prefix):].strip()
# Remove quotes if they wrap the entire answer
if (answer.startswith('"') and answer.endswith('"')) or (answer.startswith("'") and answer.endswith("'")):
answer = answer[1:-1].strip()
return answer