|
import os |
|
import gradio as gr |
|
import requests |
|
import inspect |
|
import pandas as pd |
|
from core_agent import GAIAAgent |
|
|
|
|
|
def debug_environment(): |
|
"""Print available environment variables related to API keys (with values hidden)""" |
|
debug_vars = [ |
|
"HF_API_TOKEN", "HUGGINGFACEHUB_API_TOKEN", |
|
"OPENAI_API_KEY", "XAI_API_KEY", |
|
"AGENT_MODEL_TYPE", "AGENT_MODEL_ID", |
|
"AGENT_TEMPERATURE", "AGENT_VERBOSE" |
|
] |
|
|
|
print("=== DEBUG: Environment Variables ===") |
|
for var in debug_vars: |
|
if os.environ.get(var): |
|
|
|
print(f"{var}: [SET]") |
|
else: |
|
print(f"{var}: [NOT SET]") |
|
print("===================================") |
|
|
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
|
|
|
|
class BasicAgent: |
|
def __init__(self): |
|
print("BasicAgent initialized.") |
|
|
|
|
|
debug_environment() |
|
|
|
|
|
try: |
|
|
|
try: |
|
import dotenv |
|
dotenv.load_dotenv() |
|
print("Loaded environment variables from .env file") |
|
except ImportError: |
|
print("python-dotenv not installed, continuing with environment as is") |
|
|
|
|
|
|
|
hf_token = os.environ.get("HF_API_TOKEN") or os.environ.get("HUGGINGFACEHUB_API_TOKEN") |
|
openai_key = os.environ.get("OPENAI_API_KEY") |
|
xai_key = os.environ.get("XAI_API_KEY") |
|
|
|
|
|
if hf_token or openai_key or xai_key: |
|
|
|
model_type = os.environ.get("AGENT_MODEL_TYPE", "OpenAIServerModel") |
|
model_id = os.environ.get("AGENT_MODEL_ID", "gpt-4o") |
|
temperature = float(os.environ.get("AGENT_TEMPERATURE", "0.2")) |
|
verbose = os.environ.get("AGENT_VERBOSE", "false").lower() == "true" |
|
|
|
print(f"Agent config - Model Type: {model_type}, Model ID: {model_id}") |
|
|
|
try: |
|
if xai_key: |
|
|
|
api_base = os.environ.get("XAI_API_BASE", "https://api.x.ai/v1") |
|
self.gaia_agent = GAIAAgent( |
|
model_type="OpenAIServerModel", |
|
model_id="grok-3-latest", |
|
api_key=xai_key, |
|
api_base=api_base, |
|
temperature=temperature, |
|
executor_type="local", |
|
verbose=verbose |
|
) |
|
print(f"Using OpenAIServerModel with X.AI API at {api_base}") |
|
elif model_type == "HfApiModel" and hf_token: |
|
|
|
self.gaia_agent = GAIAAgent( |
|
model_type="HfApiModel", |
|
model_id=model_id, |
|
api_key=hf_token, |
|
temperature=temperature, |
|
executor_type="local", |
|
verbose=verbose |
|
) |
|
print(f"Using HfApiModel with model_id: {model_id}") |
|
elif openai_key: |
|
|
|
api_base = os.environ.get("AGENT_API_BASE") |
|
kwargs = { |
|
"model_type": "OpenAIServerModel", |
|
"model_id": model_id, |
|
"api_key": openai_key, |
|
"temperature": temperature, |
|
"executor_type": "local", |
|
"verbose": verbose |
|
} |
|
if api_base: |
|
kwargs["api_base"] = api_base |
|
print(f"Using custom API base: {api_base}") |
|
|
|
self.gaia_agent = GAIAAgent(**kwargs) |
|
print(f"Using OpenAIServerModel with model_id: {model_id}") |
|
else: |
|
|
|
print("WARNING: Using fallback initialization with available token") |
|
if hf_token: |
|
self.gaia_agent = GAIAAgent( |
|
model_type="HfApiModel", |
|
model_id="mistralai/Mistral-7B-Instruct-v0.2", |
|
api_key=hf_token, |
|
temperature=temperature, |
|
executor_type="local", |
|
verbose=verbose |
|
) |
|
elif openai_key: |
|
self.gaia_agent = GAIAAgent( |
|
model_type="OpenAIServerModel", |
|
model_id="gpt-3.5-turbo", |
|
api_key=openai_key, |
|
temperature=temperature, |
|
executor_type="local", |
|
verbose=verbose |
|
) |
|
else: |
|
self.gaia_agent = GAIAAgent( |
|
model_type="OpenAIServerModel", |
|
model_id="grok-3-latest", |
|
api_key=xai_key, |
|
api_base=os.environ.get("XAI_API_BASE", "https://api.x.ai/v1"), |
|
temperature=temperature, |
|
executor_type="local", |
|
verbose=verbose |
|
) |
|
except ImportError as ie: |
|
|
|
if "openai" in str(ie).lower() and hf_token: |
|
print(f"OpenAI module error: {ie}. Falling back to HfApiModel.") |
|
self.gaia_agent = GAIAAgent( |
|
model_type="HfApiModel", |
|
model_id="mistralai/Mistral-7B-Instruct-v0.2", |
|
api_key=hf_token, |
|
temperature=temperature, |
|
executor_type="local", |
|
verbose=verbose |
|
) |
|
print(f"Using HfApiModel with model_id: mistralai/Mistral-7B-Instruct-v0.2 (fallback)") |
|
else: |
|
raise |
|
else: |
|
|
|
print("ERROR: No API keys found. Please set at least one of these environment variables:") |
|
print("- HUGGINGFACEHUB_API_TOKEN or HF_API_TOKEN") |
|
print("- OPENAI_API_KEY") |
|
print("- XAI_API_KEY") |
|
self.gaia_agent = None |
|
print("WARNING: No API keys found. Agent will not be able to answer questions.") |
|
|
|
except Exception as e: |
|
print(f"Error initializing GAIAAgent: {e}") |
|
self.gaia_agent = None |
|
print("WARNING: Failed to initialize agent. Falling back to basic responses.") |
|
|
|
def __call__(self, question: str) -> str: |
|
print(f"Agent received question (first 50 chars): {question[:50]}...") |
|
|
|
|
|
if self.gaia_agent: |
|
try: |
|
|
|
answer = self.gaia_agent.answer_question(question) |
|
print(f"Agent generated answer: {answer[:50]}..." if len(answer) > 50 else f"Agent generated answer: {answer}") |
|
return answer |
|
except Exception as e: |
|
print(f"Error processing question: {e}") |
|
|
|
return "An error occurred while processing your question. Please check the agent logs for details." |
|
else: |
|
|
|
return "The agent is not properly initialized. Please check your API keys and configuration." |
|
|
|
def run_and_submit_all( profile: gr.OAuthProfile | None): |
|
""" |
|
Fetches all questions, runs the BasicAgent on them, submits all answers, |
|
and displays the results. |
|
""" |
|
|
|
space_id = os.getenv("SPACE_ID") |
|
|
|
if profile: |
|
username= f"{profile.username}" |
|
print(f"User logged in: {username}") |
|
else: |
|
print("User not logged in.") |
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
|
|
|
|
try: |
|
agent = BasicAgent() |
|
|
|
|
|
if not agent.gaia_agent: |
|
print("ERROR: Agent was not properly initialized") |
|
return "ERROR: Agent was not properly initialized. Check the logs for details on missing API keys or configuration.", None |
|
|
|
except Exception as e: |
|
print(f"Error instantiating agent: {e}") |
|
return f"Error initializing agent: {e}", None |
|
|
|
agent_code = f"https://huggingface.co./spaces/{space_id}/tree/main" |
|
print(agent_code) |
|
|
|
|
|
print(f"Fetching questions from: {questions_url}") |
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
if not questions_data: |
|
print("Fetched questions list is empty.") |
|
return "Fetched questions list is empty or invalid format.", None |
|
print(f"Fetched {len(questions_data)} questions.") |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error fetching questions: {e}") |
|
return f"Error fetching questions: {e}", None |
|
except requests.exceptions.JSONDecodeError as e: |
|
print(f"Error decoding JSON response from questions endpoint: {e}") |
|
print(f"Response text: {response.text[:500]}") |
|
return f"Error decoding server response for questions: {e}", None |
|
except Exception as e: |
|
print(f"An unexpected error occurred fetching questions: {e}") |
|
return f"An unexpected error occurred fetching questions: {e}", None |
|
|
|
|
|
results_log = [] |
|
answers_payload = [] |
|
print(f"Running agent on {len(questions_data)} questions...") |
|
for item in questions_data: |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
if not task_id or question_text is None: |
|
print(f"Skipping item with missing task_id or question: {item}") |
|
continue |
|
try: |
|
submitted_answer = agent(question_text) |
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) |
|
except Exception as e: |
|
print(f"Error running agent on task {task_id}: {e}") |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) |
|
|
|
if not answers_payload: |
|
print("Agent did not produce any answers to submit.") |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
|
|
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} |
|
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." |
|
print(status_update) |
|
|
|
|
|
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") |
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = ( |
|
f"Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
) |
|
print("Submission successful.") |
|
results_df = pd.DataFrame(results_log) |
|
return final_status, results_df |
|
except requests.exceptions.HTTPError as e: |
|
error_detail = f"Server responded with status {e.response.status_code}." |
|
try: |
|
error_json = e.response.json() |
|
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" |
|
except requests.exceptions.JSONDecodeError: |
|
error_detail += f" Response: {e.response.text[:500]}" |
|
status_message = f"Submission Failed: {error_detail}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.Timeout: |
|
status_message = "Submission Failed: The request timed out." |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.RequestException as e: |
|
status_message = f"Submission Failed: Network error - {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except Exception as e: |
|
status_message = f"An unexpected error occurred during submission: {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Basic Agent Evaluation Runner") |
|
gr.Markdown( |
|
""" |
|
**Instructions:** |
|
|
|
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... |
|
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. |
|
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. |
|
|
|
--- |
|
**Disclaimers:** |
|
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). |
|
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. |
|
""" |
|
) |
|
|
|
gr.LoginButton() |
|
|
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
|
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
|
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
|
|
run_button.click( |
|
fn=run_and_submit_all, |
|
outputs=[status_output, results_table] |
|
) |
|
|
|
if __name__ == "__main__": |
|
print("\n" + "-"*30 + " App Starting " + "-"*30) |
|
|
|
space_host_startup = os.getenv("SPACE_HOST") |
|
space_id_startup = os.getenv("SPACE_ID") |
|
|
|
if space_host_startup: |
|
print(f"✅ SPACE_HOST found: {space_host_startup}") |
|
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") |
|
else: |
|
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") |
|
|
|
if space_id_startup: |
|
print(f"✅ SPACE_ID found: {space_id_startup}") |
|
print(f" Repo URL: https://huggingface.co./spaces/{space_id_startup}") |
|
print(f" Repo Tree URL: https://huggingface.co./spaces/{space_id_startup}/tree/main") |
|
else: |
|
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") |
|
|
|
print("-"*(60 + len(" App Starting ")) + "\n") |
|
|
|
print("Launching Gradio Interface for Basic Agent Evaluation...") |
|
demo.launch(debug=True, share=False) |