import torch import torch.nn.functional as F from torch.autograd import Variable from math import exp from lpips import LPIPS def smooth_l1_loss(pred, target, beta=1.0): diff = torch.abs(pred - target) loss = torch.where(diff < beta, 0.5 * diff ** 2 / beta, diff - 0.5 * beta) return loss.mean() def l1_loss(network_output, gt): return torch.abs((network_output - gt)).mean() def l2_loss(network_output, gt): return ((network_output - gt) ** 2).mean() def gaussian(window_size, sigma): gauss = torch.Tensor([exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)]) return gauss / gauss.sum() def create_window(window_size, channel): _1D_window = gaussian(window_size, 1.5).unsqueeze(1) _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0) window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous()) return window def psnr(img1, img2, max_val=1.0): mse = F.mse_loss(img1, img2) return 20 * torch.log10(max_val / torch.sqrt(mse)) def ssim(img1, img2, window_size=11, size_average=True): channel = img1.size(-3) window = create_window(window_size, channel) if img1.is_cuda: window = window.cuda(img1.get_device()) window = window.type_as(img1) return _ssim(img1, img2, window, window_size, channel, size_average) def _ssim(img1, img2, window, window_size, channel, size_average=True): mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel) mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel) mu1_sq = mu1.pow(2) mu2_sq = mu2.pow(2) mu1_mu2 = mu1 * mu2 sigma1_sq = F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq sigma2_sq = F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq sigma12 = F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2 C1 = 0.01 ** 2 C2 = 0.03 ** 2 ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) if size_average: return ssim_map.mean() else: return ssim_map.mean(1).mean(1).mean(1) loss_fn_vgg = None def lpips(img1, img2, value_range=(0, 1)): global loss_fn_vgg if loss_fn_vgg is None: loss_fn_vgg = LPIPS(net='vgg').cuda().eval() # normalize to [-1, 1] img1 = (img1 - value_range[0]) / (value_range[1] - value_range[0]) * 2 - 1 img2 = (img2 - value_range[0]) / (value_range[1] - value_range[0]) * 2 - 1 return loss_fn_vgg(img1, img2).mean() def normal_angle(pred, gt): pred = pred * 2.0 - 1.0 gt = gt * 2.0 - 1.0 norms = pred.norm(dim=-1) * gt.norm(dim=-1) cos_sim = (pred * gt).sum(-1) / (norms + 1e-9) cos_sim = torch.clamp(cos_sim, -1.0, 1.0) ang = torch.rad2deg(torch.acos(cos_sim[norms > 1e-9])).mean() if ang.isnan(): return -1 return ang