Spaces:
Running
on
Zero
Running
on
Zero
from typing import * | |
import math | |
import torch | |
import numpy as np | |
from torch.utils.data import Sampler, Dataset, DataLoader, DistributedSampler | |
import torch.distributed as dist | |
def recursive_to_device( | |
data: Any, | |
device: torch.device, | |
non_blocking: bool = False, | |
) -> Any: | |
""" | |
Recursively move all tensors in a data structure to a device. | |
""" | |
if hasattr(data, "to"): | |
return data.to(device, non_blocking=non_blocking) | |
elif isinstance(data, (list, tuple)): | |
return type(data)(recursive_to_device(d, device, non_blocking) for d in data) | |
elif isinstance(data, dict): | |
return {k: recursive_to_device(v, device, non_blocking) for k, v in data.items()} | |
else: | |
return data | |
def load_balanced_group_indices( | |
load: List[int], | |
num_groups: int, | |
equal_size: bool = False, | |
) -> List[List[int]]: | |
""" | |
Split indices into groups with balanced load. | |
""" | |
if equal_size: | |
group_size = len(load) // num_groups | |
indices = np.argsort(load)[::-1] | |
groups = [[] for _ in range(num_groups)] | |
group_load = np.zeros(num_groups) | |
for idx in indices: | |
min_group_idx = np.argmin(group_load) | |
groups[min_group_idx].append(idx) | |
if equal_size and len(groups[min_group_idx]) == group_size: | |
group_load[min_group_idx] = float('inf') | |
else: | |
group_load[min_group_idx] += load[idx] | |
return groups | |
def cycle(data_loader: DataLoader) -> Iterator: | |
while True: | |
for data in data_loader: | |
if isinstance(data_loader.sampler, ResumableSampler): | |
data_loader.sampler.idx += data_loader.batch_size # type: ignore[attr-defined] | |
yield data | |
if isinstance(data_loader.sampler, DistributedSampler): | |
data_loader.sampler.epoch += 1 | |
if isinstance(data_loader.sampler, ResumableSampler): | |
data_loader.sampler.epoch += 1 | |
data_loader.sampler.idx = 0 | |
class ResumableSampler(Sampler): | |
""" | |
Distributed sampler that is resumable. | |
Args: | |
dataset: Dataset used for sampling. | |
rank (int, optional): Rank of the current process within :attr:`num_replicas`. | |
By default, :attr:`rank` is retrieved from the current distributed | |
group. | |
shuffle (bool, optional): If ``True`` (default), sampler will shuffle the | |
indices. | |
seed (int, optional): random seed used to shuffle the sampler if | |
:attr:`shuffle=True`. This number should be identical across all | |
processes in the distributed group. Default: ``0``. | |
drop_last (bool, optional): if ``True``, then the sampler will drop the | |
tail of the data to make it evenly divisible across the number of | |
replicas. If ``False``, the sampler will add extra indices to make | |
the data evenly divisible across the replicas. Default: ``False``. | |
""" | |
def __init__( | |
self, | |
dataset: Dataset, | |
shuffle: bool = True, | |
seed: int = 0, | |
drop_last: bool = False, | |
) -> None: | |
self.dataset = dataset | |
self.epoch = 0 | |
self.idx = 0 | |
self.drop_last = drop_last | |
self.world_size = dist.get_world_size() if dist.is_initialized() else 1 | |
self.rank = dist.get_rank() if dist.is_initialized() else 0 | |
# If the dataset length is evenly divisible by # of replicas, then there | |
# is no need to drop any data, since the dataset will be split equally. | |
if self.drop_last and len(self.dataset) % self.world_size != 0: # type: ignore[arg-type] | |
# Split to nearest available length that is evenly divisible. | |
# This is to ensure each rank receives the same amount of data when | |
# using this Sampler. | |
self.num_samples = math.ceil( | |
(len(self.dataset) - self.world_size) / self.world_size # type: ignore[arg-type] | |
) | |
else: | |
self.num_samples = math.ceil(len(self.dataset) / self.world_size) # type: ignore[arg-type] | |
self.total_size = self.num_samples * self.world_size | |
self.shuffle = shuffle | |
self.seed = seed | |
def __iter__(self) -> Iterator: | |
if self.shuffle: | |
# deterministically shuffle based on epoch and seed | |
g = torch.Generator() | |
g.manual_seed(self.seed + self.epoch) | |
indices = torch.randperm(len(self.dataset), generator=g).tolist() # type: ignore[arg-type] | |
else: | |
indices = list(range(len(self.dataset))) # type: ignore[arg-type] | |
if not self.drop_last: | |
# add extra samples to make it evenly divisible | |
padding_size = self.total_size - len(indices) | |
if padding_size <= len(indices): | |
indices += indices[:padding_size] | |
else: | |
indices += (indices * math.ceil(padding_size / len(indices)))[ | |
:padding_size | |
] | |
else: | |
# remove tail of data to make it evenly divisible. | |
indices = indices[: self.total_size] | |
assert len(indices) == self.total_size | |
# subsample | |
indices = indices[self.rank : self.total_size : self.world_size] | |
# resume from previous state | |
indices = indices[self.idx:] | |
return iter(indices) | |
def __len__(self) -> int: | |
return self.num_samples | |
def state_dict(self) -> dict[str, int]: | |
return { | |
'epoch': self.epoch, | |
'idx': self.idx, | |
} | |
def load_state_dict(self, state_dict): | |
self.epoch = state_dict['epoch'] | |
self.idx = state_dict['idx'] | |
class BalancedResumableSampler(ResumableSampler): | |
""" | |
Distributed sampler that is resumable and balances the load among the processes. | |
Args: | |
dataset: Dataset used for sampling. | |
rank (int, optional): Rank of the current process within :attr:`num_replicas`. | |
By default, :attr:`rank` is retrieved from the current distributed | |
group. | |
shuffle (bool, optional): If ``True`` (default), sampler will shuffle the | |
indices. | |
seed (int, optional): random seed used to shuffle the sampler if | |
:attr:`shuffle=True`. This number should be identical across all | |
processes in the distributed group. Default: ``0``. | |
drop_last (bool, optional): if ``True``, then the sampler will drop the | |
tail of the data to make it evenly divisible across the number of | |
replicas. If ``False``, the sampler will add extra indices to make | |
the data evenly divisible across the replicas. Default: ``False``. | |
""" | |
def __init__( | |
self, | |
dataset: Dataset, | |
shuffle: bool = True, | |
seed: int = 0, | |
drop_last: bool = False, | |
batch_size: int = 1, | |
) -> None: | |
assert hasattr(dataset, 'loads'), 'Dataset must have "loads" attribute to use BalancedResumableSampler' | |
super().__init__(dataset, shuffle, seed, drop_last) | |
self.batch_size = batch_size | |
self.loads = dataset.loads | |
def __iter__(self) -> Iterator: | |
if self.shuffle: | |
# deterministically shuffle based on epoch and seed | |
g = torch.Generator() | |
g.manual_seed(self.seed + self.epoch) | |
indices = torch.randperm(len(self.dataset), generator=g).tolist() # type: ignore[arg-type] | |
else: | |
indices = list(range(len(self.dataset))) # type: ignore[arg-type] | |
if not self.drop_last: | |
# add extra samples to make it evenly divisible | |
padding_size = self.total_size - len(indices) | |
if padding_size <= len(indices): | |
indices += indices[:padding_size] | |
else: | |
indices += (indices * math.ceil(padding_size / len(indices)))[ | |
:padding_size | |
] | |
else: | |
# remove tail of data to make it evenly divisible. | |
indices = indices[: self.total_size] | |
assert len(indices) == self.total_size | |
# balance load among processes | |
num_batches = len(indices) // (self.batch_size * self.world_size) | |
balanced_indices = [] | |
for i in range(num_batches): | |
start_idx = i * self.batch_size * self.world_size | |
end_idx = (i + 1) * self.batch_size * self.world_size | |
batch_indices = indices[start_idx:end_idx] | |
batch_loads = [self.loads[idx] for idx in batch_indices] | |
groups = load_balanced_group_indices(batch_loads, self.world_size, equal_size=True) | |
balanced_indices.extend([batch_indices[j] for j in groups[self.rank]]) | |
# resume from previous state | |
indices = balanced_indices[self.idx:] | |
return iter(indices) | |