TRELLIS-Texto3D / trellis /trainers /vae /structured_latent_vae_mesh_dec.py
cavargas10's picture
Upload 13 files
04fa6ac verified
raw
history blame contribute delete
17.8 kB
from typing import *
import copy
import torch
from torch.utils.data import DataLoader
import numpy as np
from easydict import EasyDict as edict
import utils3d.torch
from ..basic import BasicTrainer
from ...representations import MeshExtractResult
from ...renderers import MeshRenderer
from ...modules.sparse import SparseTensor
from ...utils.loss_utils import l1_loss, smooth_l1_loss, ssim, lpips
from ...utils.data_utils import recursive_to_device
class SLatVaeMeshDecoderTrainer(BasicTrainer):
"""
Trainer for structured latent VAE Mesh Decoder.
Args:
models (dict[str, nn.Module]): Models to train.
dataset (torch.utils.data.Dataset): Dataset.
output_dir (str): Output directory.
load_dir (str): Load directory.
step (int): Step to load.
batch_size (int): Batch size.
batch_size_per_gpu (int): Batch size per GPU. If specified, batch_size will be ignored.
batch_split (int): Split batch with gradient accumulation.
max_steps (int): Max steps.
optimizer (dict): Optimizer config.
lr_scheduler (dict): Learning rate scheduler config.
elastic (dict): Elastic memory management config.
grad_clip (float or dict): Gradient clip config.
ema_rate (float or list): Exponential moving average rates.
fp16_mode (str): FP16 mode.
- None: No FP16.
- 'inflat_all': Hold a inflated fp32 master param for all params.
- 'amp': Automatic mixed precision.
fp16_scale_growth (float): Scale growth for FP16 gradient backpropagation.
finetune_ckpt (dict): Finetune checkpoint.
log_param_stats (bool): Log parameter stats.
i_print (int): Print interval.
i_log (int): Log interval.
i_sample (int): Sample interval.
i_save (int): Save interval.
i_ddpcheck (int): DDP check interval.
loss_type (str): Loss type. Can be 'l1', 'l2'
lambda_ssim (float): SSIM loss weight.
lambda_lpips (float): LPIPS loss weight.
"""
def __init__(
self,
*args,
depth_loss_type: str = 'l1',
lambda_depth: int = 1,
lambda_ssim: float = 0.2,
lambda_lpips: float = 0.2,
lambda_tsdf: float = 0.01,
lambda_color: float = 0.1,
**kwargs
):
super().__init__(*args, **kwargs)
self.depth_loss_type = depth_loss_type
self.lambda_depth = lambda_depth
self.lambda_ssim = lambda_ssim
self.lambda_lpips = lambda_lpips
self.lambda_tsdf = lambda_tsdf
self.lambda_color = lambda_color
self.use_color = self.lambda_color > 0
self._init_renderer()
def _init_renderer(self):
rendering_options = {"near" : 1,
"far" : 3}
self.renderer = MeshRenderer(rendering_options, device=self.device)
def _render_batch(self, reps: List[MeshExtractResult], extrinsics: torch.Tensor, intrinsics: torch.Tensor,
return_types=['mask', 'normal', 'depth']) -> Dict[str, torch.Tensor]:
"""
Render a batch of representations.
Args:
reps: The dictionary of lists of representations.
extrinsics: The [N x 4 x 4] tensor of extrinsics.
intrinsics: The [N x 3 x 3] tensor of intrinsics.
return_types: vary in ['mask', 'normal', 'depth', 'normal_map', 'color']
Returns:
a dict with
reg_loss : [N] tensor of regularization losses
mask : [N x 1 x H x W] tensor of rendered masks
normal : [N x 3 x H x W] tensor of rendered normals
depth : [N x 1 x H x W] tensor of rendered depths
"""
ret = {k : [] for k in return_types}
for i, rep in enumerate(reps):
out_dict = self.renderer.render(rep, extrinsics[i], intrinsics[i], return_types=return_types)
for k in out_dict:
ret[k].append(out_dict[k][None] if k in ['mask', 'depth'] else out_dict[k])
for k in ret:
ret[k] = torch.stack(ret[k])
return ret
@staticmethod
def _tsdf_reg_loss(rep: MeshExtractResult, depth_map: torch.Tensor, extrinsics: torch.Tensor, intrinsics: torch.Tensor) -> torch.Tensor:
# Calculate tsdf
with torch.no_grad():
# Project points to camera and calculate pseudo-sdf as difference between gt depth and projected depth
projected_pts, pts_depth = utils3d.torch.project_cv(extrinsics=extrinsics, intrinsics=intrinsics, points=rep.tsdf_v)
projected_pts = (projected_pts - 0.5) * 2.0
depth_map_res = depth_map.shape[1]
gt_depth = torch.nn.functional.grid_sample(depth_map.reshape(1, 1, depth_map_res, depth_map_res),
projected_pts.reshape(1, 1, -1, 2), mode='bilinear', padding_mode='border', align_corners=True)
pseudo_sdf = gt_depth.flatten() - pts_depth.flatten()
# Truncate pseudo-sdf
delta = 1 / rep.res * 3.0
trunc_mask = pseudo_sdf > -delta
# Loss
gt_tsdf = pseudo_sdf[trunc_mask]
tsdf = rep.tsdf_s.flatten()[trunc_mask]
gt_tsdf = torch.clamp(gt_tsdf, -delta, delta)
return torch.mean((tsdf - gt_tsdf) ** 2)
def _calc_tsdf_loss(self, reps : list[MeshExtractResult], depth_maps, extrinsics, intrinsics) -> torch.Tensor:
tsdf_loss = 0.0
for i, rep in enumerate(reps):
tsdf_loss += self._tsdf_reg_loss(rep, depth_maps[i], extrinsics[i], intrinsics[i])
return tsdf_loss / len(reps)
@torch.no_grad()
def _flip_normal(self, normal: torch.Tensor, extrinsics: torch.Tensor, intrinsics: torch.Tensor) -> torch.Tensor:
"""
Flip normal to align with camera.
"""
normal = normal * 2.0 - 1.0
R = torch.zeros_like(extrinsics)
R[:, :3, :3] = extrinsics[:, :3, :3]
R[:, 3, 3] = 1.0
view_dir = utils3d.torch.unproject_cv(
utils3d.torch.image_uv(*normal.shape[-2:], device=self.device).reshape(1, -1, 2),
torch.ones(*normal.shape[-2:], device=self.device).reshape(1, -1),
R, intrinsics
).reshape(-1, *normal.shape[-2:], 3).permute(0, 3, 1, 2)
unflip = (normal * view_dir).sum(1, keepdim=True) < 0
normal *= unflip * 2.0 - 1.0
return (normal + 1.0) / 2.0
def _perceptual_loss(self, gt: torch.Tensor, pred: torch.Tensor, name: str) -> Dict[str, torch.Tensor]:
"""
Combination of L1, SSIM, and LPIPS loss.
"""
if gt.shape[1] != 3:
assert gt.shape[-1] == 3
gt = gt.permute(0, 3, 1, 2)
if pred.shape[1] != 3:
assert pred.shape[-1] == 3
pred = pred.permute(0, 3, 1, 2)
terms = {
f"{name}_loss" : l1_loss(gt, pred),
f"{name}_loss_ssim" : 1 - ssim(gt, pred),
f"{name}_loss_lpips" : lpips(gt, pred)
}
terms[f"{name}_loss_perceptual"] = terms[f"{name}_loss"] + terms[f"{name}_loss_ssim"] * self.lambda_ssim + terms[f"{name}_loss_lpips"] * self.lambda_lpips
return terms
def geometry_losses(
self,
reps: List[MeshExtractResult],
mesh: List[Dict],
normal_map: torch.Tensor,
extrinsics: torch.Tensor,
intrinsics: torch.Tensor,
):
with torch.no_grad():
gt_meshes = []
for i in range(len(reps)):
gt_mesh = MeshExtractResult(mesh[i]['vertices'].to(self.device), mesh[i]['faces'].to(self.device))
gt_meshes.append(gt_mesh)
target = self._render_batch(gt_meshes, extrinsics, intrinsics, return_types=['mask', 'depth', 'normal'])
target['normal'] = self._flip_normal(target['normal'], extrinsics, intrinsics)
terms = edict(geo_loss = 0.0)
if self.lambda_tsdf > 0:
tsdf_loss = self._calc_tsdf_loss(reps, target['depth'], extrinsics, intrinsics)
terms['tsdf_loss'] = tsdf_loss
terms['geo_loss'] += tsdf_loss * self.lambda_tsdf
return_types = ['mask', 'depth', 'normal', 'normal_map'] if self.use_color else ['mask', 'depth', 'normal']
buffer = self._render_batch(reps, extrinsics, intrinsics, return_types=return_types)
success_mask = torch.tensor([rep.success for rep in reps], device=self.device)
if success_mask.sum() != 0:
for k, v in buffer.items():
buffer[k] = v[success_mask]
for k, v in target.items():
target[k] = v[success_mask]
terms['mask_loss'] = l1_loss(buffer['mask'], target['mask'])
if self.depth_loss_type == 'l1':
terms['depth_loss'] = l1_loss(buffer['depth'] * target['mask'], target['depth'] * target['mask'])
elif self.depth_loss_type == 'smooth_l1':
terms['depth_loss'] = smooth_l1_loss(buffer['depth'] * target['mask'], target['depth'] * target['mask'], beta=1.0 / (2 * reps[0].res))
else:
raise ValueError(f"Unsupported depth loss type: {self.depth_loss_type}")
terms.update(self._perceptual_loss(buffer['normal'] * target['mask'], target['normal'] * target['mask'], 'normal'))
terms['geo_loss'] = terms['geo_loss'] + terms['mask_loss'] + terms['depth_loss'] * self.lambda_depth + terms['normal_loss_perceptual']
if self.use_color and normal_map is not None:
terms.update(self._perceptual_loss(normal_map[success_mask], buffer['normal_map'], 'normal_map'))
terms['geo_loss'] = terms['geo_loss'] + terms['normal_map_loss_perceptual'] * self.lambda_color
return terms
def color_losses(self, reps, image, alpha, extrinsics, intrinsics):
terms = edict(color_loss = torch.tensor(0.0, device=self.device))
buffer = self._render_batch(reps, extrinsics, intrinsics, return_types=['color'])
success_mask = torch.tensor([rep.success for rep in reps], device=self.device)
if success_mask.sum() != 0:
terms.update(self._perceptual_loss(image * alpha[:, None][success_mask], buffer['color'][success_mask], 'color'))
terms['color_loss'] = terms['color_loss'] + terms['color_loss_perceptual'] * self.lambda_color
return terms
def training_losses(
self,
latents: SparseTensor,
image: torch.Tensor,
alpha: torch.Tensor,
mesh: List[Dict],
extrinsics: torch.Tensor,
intrinsics: torch.Tensor,
normal_map: torch.Tensor = None,
) -> Tuple[Dict, Dict]:
"""
Compute training losses.
Args:
latents: The [N x * x C] sparse latents
image: The [N x 3 x H x W] tensor of images.
alpha: The [N x H x W] tensor of alpha channels.
mesh: The list of dictionaries of meshes.
extrinsics: The [N x 4 x 4] tensor of extrinsics.
intrinsics: The [N x 3 x 3] tensor of intrinsics.
Returns:
a dict with the key "loss" containing a scalar tensor.
may also contain other keys for different terms.
"""
reps = self.training_models['decoder'](latents)
self.renderer.rendering_options.resolution = image.shape[-1]
terms = edict(loss = 0.0, rec = 0.0)
terms['reg_loss'] = sum([rep.reg_loss for rep in reps]) / len(reps)
terms['loss'] = terms['loss'] + terms['reg_loss']
geo_terms = self.geometry_losses(reps, mesh, normal_map, extrinsics, intrinsics)
terms.update(geo_terms)
terms['loss'] = terms['loss'] + terms['geo_loss']
if self.use_color:
color_terms = self.color_losses(reps, image, alpha, extrinsics, intrinsics)
terms.update(color_terms)
terms['loss'] = terms['loss'] + terms['color_loss']
return terms, {}
@torch.no_grad()
def run_snapshot(
self,
num_samples: int,
batch_size: int,
verbose: bool = False,
) -> Dict:
dataloader = DataLoader(
copy.deepcopy(self.dataset),
batch_size=batch_size,
shuffle=True,
num_workers=0,
collate_fn=self.dataset.collate_fn if hasattr(self.dataset, 'collate_fn') else None,
)
# inference
ret_dict = {}
gt_images = []
gt_normal_maps = []
gt_meshes = []
exts = []
ints = []
reps = []
for i in range(0, num_samples, batch_size):
batch = min(batch_size, num_samples - i)
data = next(iter(dataloader))
args = recursive_to_device(data, 'cuda')
gt_images.append(args['image'] * args['alpha'][:, None])
if self.use_color and 'normal_map' in data:
gt_normal_maps.append(args['normal_map'])
gt_meshes.extend(args['mesh'])
exts.append(args['extrinsics'])
ints.append(args['intrinsics'])
reps.extend(self.models['decoder'](args['latents']))
gt_images = torch.cat(gt_images, dim=0)
ret_dict.update({f'gt_image': {'value': gt_images, 'type': 'image'}})
if self.use_color and gt_normal_maps:
gt_normal_maps = torch.cat(gt_normal_maps, dim=0)
ret_dict.update({f'gt_normal_map': {'value': gt_normal_maps, 'type': 'image'}})
# render single view
exts = torch.cat(exts, dim=0)
ints = torch.cat(ints, dim=0)
self.renderer.rendering_options.bg_color = (0, 0, 0)
self.renderer.rendering_options.resolution = gt_images.shape[-1]
gt_render_results = self._render_batch([
MeshExtractResult(vertices=mesh['vertices'].to(self.device), faces=mesh['faces'].to(self.device))
for mesh in gt_meshes
], exts, ints, return_types=['normal'])
ret_dict.update({f'gt_normal': {'value': self._flip_normal(gt_render_results['normal'], exts, ints), 'type': 'image'}})
return_types = ['normal']
if self.use_color:
return_types.append('color')
if 'normal_map' in data:
return_types.append('normal_map')
render_results = self._render_batch(reps, exts, ints, return_types=return_types)
ret_dict.update({f'rec_normal': {'value': render_results['normal'], 'type': 'image'}})
if 'color' in return_types:
ret_dict.update({f'rec_image': {'value': render_results['color'], 'type': 'image'}})
if 'normal_map' in return_types:
ret_dict.update({f'rec_normal_map': {'value': render_results['normal_map'], 'type': 'image'}})
# render multiview
self.renderer.rendering_options.resolution = 512
## Build camera
yaws = [0, np.pi / 2, np.pi, 3 * np.pi / 2]
yaws_offset = np.random.uniform(-np.pi / 4, np.pi / 4)
yaws = [y + yaws_offset for y in yaws]
pitch = [np.random.uniform(-np.pi / 4, np.pi / 4) for _ in range(4)]
## render each view
multiview_normals = []
multiview_normal_maps = []
miltiview_images = []
for yaw, pitch in zip(yaws, pitch):
orig = torch.tensor([
np.sin(yaw) * np.cos(pitch),
np.cos(yaw) * np.cos(pitch),
np.sin(pitch),
]).float().cuda() * 2
fov = torch.deg2rad(torch.tensor(30)).cuda()
extrinsics = utils3d.torch.extrinsics_look_at(orig, torch.tensor([0, 0, 0]).float().cuda(), torch.tensor([0, 0, 1]).float().cuda())
intrinsics = utils3d.torch.intrinsics_from_fov_xy(fov, fov)
extrinsics = extrinsics.unsqueeze(0).expand(num_samples, -1, -1)
intrinsics = intrinsics.unsqueeze(0).expand(num_samples, -1, -1)
render_results = self._render_batch(reps, extrinsics, intrinsics, return_types=return_types)
multiview_normals.append(render_results['normal'])
if 'color' in return_types:
miltiview_images.append(render_results['color'])
if 'normal_map' in return_types:
multiview_normal_maps.append(render_results['normal_map'])
## Concatenate views
multiview_normals = torch.cat([
torch.cat(multiview_normals[:2], dim=-2),
torch.cat(multiview_normals[2:], dim=-2),
], dim=-1)
ret_dict.update({f'multiview_normal': {'value': multiview_normals, 'type': 'image'}})
if 'color' in return_types:
miltiview_images = torch.cat([
torch.cat(miltiview_images[:2], dim=-2),
torch.cat(miltiview_images[2:], dim=-2),
], dim=-1)
ret_dict.update({f'multiview_image': {'value': miltiview_images, 'type': 'image'}})
if 'normal_map' in return_types:
multiview_normal_maps = torch.cat([
torch.cat(multiview_normal_maps[:2], dim=-2),
torch.cat(multiview_normal_maps[2:], dim=-2),
], dim=-1)
ret_dict.update({f'multiview_normal_map': {'value': multiview_normal_maps, 'type': 'image'}})
return ret_dict