TRELLIS-Texto3D / trellis /pipelines /trellis_text_to_3d.py
cavargas10's picture
Upload 288 files
178f950 verified
from typing import *
import torch
import torch.nn as nn
import numpy as np
from transformers import CLIPTextModel, AutoTokenizer
# import open3d as o3d
from .base import Pipeline
from . import samplers
from ..modules import sparse as sp
class TrellisTextTo3DPipeline(Pipeline):
"""
Pipeline for inferring Trellis text-to-3D models.
Args:
models (dict[str, nn.Module]): The models to use in the pipeline.
sparse_structure_sampler (samplers.Sampler): The sampler for the sparse structure.
slat_sampler (samplers.Sampler): The sampler for the structured latent.
slat_normalization (dict): The normalization parameters for the structured latent.
text_cond_model (str): The name of the text conditioning model.
"""
def __init__(
self,
models: dict[str, nn.Module] = None,
sparse_structure_sampler: samplers.Sampler = None,
slat_sampler: samplers.Sampler = None,
slat_normalization: dict = None,
text_cond_model: str = None,
):
if models is None:
return
super().__init__(models)
self.sparse_structure_sampler = sparse_structure_sampler
self.slat_sampler = slat_sampler
self.sparse_structure_sampler_params = {}
self.slat_sampler_params = {}
self.slat_normalization = slat_normalization
self._init_text_cond_model(text_cond_model)
@staticmethod
def from_pretrained(path: str) -> "TrellisTextTo3DPipeline":
"""
Load a pretrained model.
Args:
path (str): The path to the model. Can be either local path or a Hugging Face repository.
"""
pipeline = super(TrellisTextTo3DPipeline, TrellisTextTo3DPipeline).from_pretrained(path)
new_pipeline = TrellisTextTo3DPipeline()
new_pipeline.__dict__ = pipeline.__dict__
args = pipeline._pretrained_args
new_pipeline.sparse_structure_sampler = getattr(samplers, args['sparse_structure_sampler']['name'])(**args['sparse_structure_sampler']['args'])
new_pipeline.sparse_structure_sampler_params = args['sparse_structure_sampler']['params']
new_pipeline.slat_sampler = getattr(samplers, args['slat_sampler']['name'])(**args['slat_sampler']['args'])
new_pipeline.slat_sampler_params = args['slat_sampler']['params']
new_pipeline.slat_normalization = args['slat_normalization']
new_pipeline._init_text_cond_model(args['text_cond_model'])
return new_pipeline
def _init_text_cond_model(self, name: str):
"""
Initialize the text conditioning model.
"""
# load model
model = CLIPTextModel.from_pretrained(name)
tokenizer = AutoTokenizer.from_pretrained(name)
model.eval()
model = model.cuda()
self.text_cond_model = {
'model': model,
'tokenizer': tokenizer,
}
self.text_cond_model['null_cond'] = self.encode_text([''])
@torch.no_grad()
def encode_text(self, text: List[str]) -> torch.Tensor:
"""
Encode the text.
"""
assert isinstance(text, list) and all(isinstance(t, str) for t in text), "text must be a list of strings"
encoding = self.text_cond_model['tokenizer'](text, max_length=77, padding='max_length', truncation=True, return_tensors='pt')
tokens = encoding['input_ids'].cuda()
embeddings = self.text_cond_model['model'](input_ids=tokens).last_hidden_state
return embeddings
def get_cond(self, prompt: List[str]) -> dict:
"""
Get the conditioning information for the model.
Args:
prompt (List[str]): The text prompt.
Returns:
dict: The conditioning information
"""
cond = self.encode_text(prompt)
neg_cond = self.text_cond_model['null_cond']
return {
'cond': cond,
'neg_cond': neg_cond,
}
def sample_sparse_structure(
self,
cond: dict,
num_samples: int = 1,
sampler_params: dict = {},
) -> torch.Tensor:
"""
Sample sparse structures with the given conditioning.
Args:
cond (dict): The conditioning information.
num_samples (int): The number of samples to generate.
sampler_params (dict): Additional parameters for the sampler.
"""
# Sample occupancy latent
flow_model = self.models['sparse_structure_flow_model']
reso = flow_model.resolution
noise = torch.randn(num_samples, flow_model.in_channels, reso, reso, reso).to(self.device)
sampler_params = {**self.sparse_structure_sampler_params, **sampler_params}
z_s = self.sparse_structure_sampler.sample(
flow_model,
noise,
**cond,
**sampler_params,
verbose=True
).samples
# Decode occupancy latent
decoder = self.models['sparse_structure_decoder']
coords = torch.argwhere(decoder(z_s)>0)[:, [0, 2, 3, 4]].int()
return coords
def decode_slat(
self,
slat: sp.SparseTensor,
formats: List[str] = ['mesh', 'gaussian', 'radiance_field'],
) -> dict:
"""
Decode the structured latent.
Args:
slat (sp.SparseTensor): The structured latent.
formats (List[str]): The formats to decode the structured latent to.
Returns:
dict: The decoded structured latent.
"""
ret = {}
if 'mesh' in formats:
ret['mesh'] = self.models['slat_decoder_mesh'](slat)
if 'gaussian' in formats:
ret['gaussian'] = self.models['slat_decoder_gs'](slat)
if 'radiance_field' in formats:
ret['radiance_field'] = self.models['slat_decoder_rf'](slat)
return ret
def sample_slat(
self,
cond: dict,
coords: torch.Tensor,
sampler_params: dict = {},
) -> sp.SparseTensor:
"""
Sample structured latent with the given conditioning.
Args:
cond (dict): The conditioning information.
coords (torch.Tensor): The coordinates of the sparse structure.
sampler_params (dict): Additional parameters for the sampler.
"""
# Sample structured latent
flow_model = self.models['slat_flow_model']
noise = sp.SparseTensor(
feats=torch.randn(coords.shape[0], flow_model.in_channels).to(self.device),
coords=coords,
)
sampler_params = {**self.slat_sampler_params, **sampler_params}
slat = self.slat_sampler.sample(
flow_model,
noise,
**cond,
**sampler_params,
verbose=True
).samples
std = torch.tensor(self.slat_normalization['std'])[None].to(slat.device)
mean = torch.tensor(self.slat_normalization['mean'])[None].to(slat.device)
slat = slat * std + mean
return slat
@torch.no_grad()
def run(
self,
prompt: str,
num_samples: int = 1,
seed: int = 42,
sparse_structure_sampler_params: dict = {},
slat_sampler_params: dict = {},
formats: List[str] = ['mesh', 'gaussian', 'radiance_field'],
) -> dict:
"""
Run the pipeline.
Args:
prompt (str): The text prompt.
num_samples (int): The number of samples to generate.
seed (int): The random seed.
sparse_structure_sampler_params (dict): Additional parameters for the sparse structure sampler.
slat_sampler_params (dict): Additional parameters for the structured latent sampler.
formats (List[str]): The formats to decode the structured latent to.
"""
cond = self.get_cond([prompt])
torch.manual_seed(seed)
coords = self.sample_sparse_structure(cond, num_samples, sparse_structure_sampler_params)
slat = self.sample_slat(cond, coords, slat_sampler_params)
return self.decode_slat(slat, formats)
'''
def voxelize(self, mesh: o3d.geometry.TriangleMesh) -> torch.Tensor:
"""
Voxelize a mesh.
Args:
mesh (o3d.geometry.TriangleMesh): The mesh to voxelize.
sha256 (str): The SHA256 hash of the mesh.
output_dir (str): The output directory.
"""
vertices = np.asarray(mesh.vertices)
aabb = np.stack([vertices.min(0), vertices.max(0)])
center = (aabb[0] + aabb[1]) / 2
scale = (aabb[1] - aabb[0]).max()
vertices = (vertices - center) / scale
vertices = np.clip(vertices, -0.5 + 1e-6, 0.5 - 1e-6)
mesh.vertices = o3d.utility.Vector3dVector(vertices)
voxel_grid = o3d.geometry.VoxelGrid.create_from_triangle_mesh_within_bounds(mesh, voxel_size=1/64, min_bound=(-0.5, -0.5, -0.5), max_bound=(0.5, 0.5, 0.5))
vertices = np.array([voxel.grid_index for voxel in voxel_grid.get_voxels()])
return torch.tensor(vertices).int().cuda()
@torch.no_grad()
def run_variant(
self,
mesh: o3d.geometry.TriangleMesh,
prompt: str,
num_samples: int = 1,
seed: int = 42,
slat_sampler_params: dict = {},
formats: List[str] = ['mesh', 'gaussian', 'radiance_field'],
) -> dict:
"""
Run the pipeline for making variants of an asset.
Args:
mesh (o3d.geometry.TriangleMesh): The base mesh.
prompt (str): The text prompt.
num_samples (int): The number of samples to generate.
seed (int): The random seed
slat_sampler_params (dict): Additional parameters for the structured latent sampler.
formats (List[str]): The formats to decode the structured latent to.
"""
cond = self.get_cond([prompt])
coords = self.voxelize(mesh)
coords = torch.cat([
torch.arange(num_samples).repeat_interleave(coords.shape[0], 0)[:, None].int().cuda(),
coords.repeat(num_samples, 1)
], 1)
torch.manual_seed(seed)
slat = self.sample_slat(cond, coords, slat_sampler_params)
return self.decode_slat(slat, formats)
'''