Spaces:
Running
on
Zero
Running
on
Zero
import json | |
import os | |
from typing import * | |
import numpy as np | |
import torch | |
import utils3d.torch | |
from .components import StandardDatasetBase, TextConditionedMixin, ImageConditionedMixin | |
from ..modules.sparse.basic import SparseTensor | |
from .. import models | |
from ..utils.render_utils import get_renderer | |
from ..utils.dist_utils import read_file_dist | |
from ..utils.data_utils import load_balanced_group_indices | |
class SLatVisMixin: | |
def __init__( | |
self, | |
*args, | |
pretrained_slat_dec: str = 'JeffreyXiang/TRELLIS-image-large/ckpts/slat_dec_gs_swin8_B_64l8gs32_fp16', | |
slat_dec_path: Optional[str] = None, | |
slat_dec_ckpt: Optional[str] = None, | |
**kwargs | |
): | |
super().__init__(*args, **kwargs) | |
self.slat_dec = None | |
self.pretrained_slat_dec = pretrained_slat_dec | |
self.slat_dec_path = slat_dec_path | |
self.slat_dec_ckpt = slat_dec_ckpt | |
def _loading_slat_dec(self): | |
if self.slat_dec is not None: | |
return | |
if self.slat_dec_path is not None: | |
cfg = json.load(open(os.path.join(self.slat_dec_path, 'config.json'), 'r')) | |
decoder = getattr(models, cfg['models']['decoder']['name'])(**cfg['models']['decoder']['args']) | |
ckpt_path = os.path.join(self.slat_dec_path, 'ckpts', f'decoder_{self.slat_dec_ckpt}.pt') | |
decoder.load_state_dict(torch.load(read_file_dist(ckpt_path), map_location='cpu', weights_only=True)) | |
else: | |
decoder = models.from_pretrained(self.pretrained_slat_dec) | |
self.slat_dec = decoder.cuda().eval() | |
def _delete_slat_dec(self): | |
del self.slat_dec | |
self.slat_dec = None | |
def decode_latent(self, z, batch_size=4): | |
self._loading_slat_dec() | |
reps = [] | |
if self.normalization is not None: | |
z = z * self.std.to(z.device) + self.mean.to(z.device) | |
for i in range(0, z.shape[0], batch_size): | |
reps.append(self.slat_dec(z[i:i+batch_size])) | |
reps = sum(reps, []) | |
self._delete_slat_dec() | |
return reps | |
def visualize_sample(self, x_0: Union[SparseTensor, dict]): | |
x_0 = x_0 if isinstance(x_0, SparseTensor) else x_0['x_0'] | |
reps = self.decode_latent(x_0.cuda()) | |
# Build camera | |
yaws = [0, np.pi / 2, np.pi, 3 * np.pi / 2] | |
yaws_offset = np.random.uniform(-np.pi / 4, np.pi / 4) | |
yaws = [y + yaws_offset for y in yaws] | |
pitch = [np.random.uniform(-np.pi / 4, np.pi / 4) for _ in range(4)] | |
exts = [] | |
ints = [] | |
for yaw, pitch in zip(yaws, pitch): | |
orig = torch.tensor([ | |
np.sin(yaw) * np.cos(pitch), | |
np.cos(yaw) * np.cos(pitch), | |
np.sin(pitch), | |
]).float().cuda() * 2 | |
fov = torch.deg2rad(torch.tensor(40)).cuda() | |
extrinsics = utils3d.torch.extrinsics_look_at(orig, torch.tensor([0, 0, 0]).float().cuda(), torch.tensor([0, 0, 1]).float().cuda()) | |
intrinsics = utils3d.torch.intrinsics_from_fov_xy(fov, fov) | |
exts.append(extrinsics) | |
ints.append(intrinsics) | |
renderer = get_renderer(reps[0]) | |
images = [] | |
for representation in reps: | |
image = torch.zeros(3, 1024, 1024).cuda() | |
tile = [2, 2] | |
for j, (ext, intr) in enumerate(zip(exts, ints)): | |
res = renderer.render(representation, ext, intr) | |
image[:, 512 * (j // tile[1]):512 * (j // tile[1] + 1), 512 * (j % tile[1]):512 * (j % tile[1] + 1)] = res['color'] | |
images.append(image) | |
images = torch.stack(images) | |
return images | |
class SLat(SLatVisMixin, StandardDatasetBase): | |
""" | |
structured latent dataset | |
Args: | |
roots (str): path to the dataset | |
latent_model (str): name of the latent model | |
min_aesthetic_score (float): minimum aesthetic score | |
max_num_voxels (int): maximum number of voxels | |
normalization (dict): normalization stats | |
pretrained_slat_dec (str): name of the pretrained slat decoder | |
slat_dec_path (str): path to the slat decoder, if given, will override the pretrained_slat_dec | |
slat_dec_ckpt (str): name of the slat decoder checkpoint | |
""" | |
def __init__(self, | |
roots: str, | |
*, | |
latent_model: str, | |
min_aesthetic_score: float = 5.0, | |
max_num_voxels: int = 32768, | |
normalization: Optional[dict] = None, | |
pretrained_slat_dec: str = 'JeffreyXiang/TRELLIS-image-large/ckpts/slat_dec_gs_swin8_B_64l8gs32_fp16', | |
slat_dec_path: Optional[str] = None, | |
slat_dec_ckpt: Optional[str] = None, | |
): | |
self.normalization = normalization | |
self.latent_model = latent_model | |
self.min_aesthetic_score = min_aesthetic_score | |
self.max_num_voxels = max_num_voxels | |
self.value_range = (0, 1) | |
super().__init__( | |
roots, | |
pretrained_slat_dec=pretrained_slat_dec, | |
slat_dec_path=slat_dec_path, | |
slat_dec_ckpt=slat_dec_ckpt, | |
) | |
self.loads = [self.metadata.loc[sha256, 'num_voxels'] for _, sha256 in self.instances] | |
if self.normalization is not None: | |
self.mean = torch.tensor(self.normalization['mean']).reshape(1, -1) | |
self.std = torch.tensor(self.normalization['std']).reshape(1, -1) | |
def filter_metadata(self, metadata): | |
stats = {} | |
metadata = metadata[metadata[f'latent_{self.latent_model}']] | |
stats['With latent'] = len(metadata) | |
metadata = metadata[metadata['aesthetic_score'] >= self.min_aesthetic_score] | |
stats[f'Aesthetic score >= {self.min_aesthetic_score}'] = len(metadata) | |
metadata = metadata[metadata['num_voxels'] <= self.max_num_voxels] | |
stats[f'Num voxels <= {self.max_num_voxels}'] = len(metadata) | |
return metadata, stats | |
def get_instance(self, root, instance): | |
data = np.load(os.path.join(root, 'latents', self.latent_model, f'{instance}.npz')) | |
coords = torch.tensor(data['coords']).int() | |
feats = torch.tensor(data['feats']).float() | |
if self.normalization is not None: | |
feats = (feats - self.mean) / self.std | |
return { | |
'coords': coords, | |
'feats': feats, | |
} | |
def collate_fn(batch, split_size=None): | |
if split_size is None: | |
group_idx = [list(range(len(batch)))] | |
else: | |
group_idx = load_balanced_group_indices([b['coords'].shape[0] for b in batch], split_size) | |
packs = [] | |
for group in group_idx: | |
sub_batch = [batch[i] for i in group] | |
pack = {} | |
coords = [] | |
feats = [] | |
layout = [] | |
start = 0 | |
for i, b in enumerate(sub_batch): | |
coords.append(torch.cat([torch.full((b['coords'].shape[0], 1), i, dtype=torch.int32), b['coords']], dim=-1)) | |
feats.append(b['feats']) | |
layout.append(slice(start, start + b['coords'].shape[0])) | |
start += b['coords'].shape[0] | |
coords = torch.cat(coords) | |
feats = torch.cat(feats) | |
pack['x_0'] = SparseTensor( | |
coords=coords, | |
feats=feats, | |
) | |
pack['x_0']._shape = torch.Size([len(group), *sub_batch[0]['feats'].shape[1:]]) | |
pack['x_0'].register_spatial_cache('layout', layout) | |
# collate other data | |
keys = [k for k in sub_batch[0].keys() if k not in ['coords', 'feats']] | |
for k in keys: | |
if isinstance(sub_batch[0][k], torch.Tensor): | |
pack[k] = torch.stack([b[k] for b in sub_batch]) | |
elif isinstance(sub_batch[0][k], list): | |
pack[k] = sum([b[k] for b in sub_batch], []) | |
else: | |
pack[k] = [b[k] for b in sub_batch] | |
packs.append(pack) | |
if split_size is None: | |
return packs[0] | |
return packs | |
class TextConditionedSLat(TextConditionedMixin, SLat): | |
""" | |
Text conditioned structured latent dataset | |
""" | |
pass | |
class ImageConditionedSLat(ImageConditionedMixin, SLat): | |
""" | |
Image conditioned structured latent dataset | |
""" | |
pass | |