Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import json | |
from typing import Union | |
import numpy as np | |
import pandas as pd | |
import torch | |
from torch.utils.data import Dataset | |
import utils3d | |
from .components import StandardDatasetBase | |
from ..representations.octree import DfsOctree as Octree | |
from ..renderers import OctreeRenderer | |
class SparseStructure(StandardDatasetBase): | |
""" | |
Sparse structure dataset | |
Args: | |
roots (str): path to the dataset | |
resolution (int): resolution of the voxel grid | |
min_aesthetic_score (float): minimum aesthetic score of the instances to be included in the dataset | |
""" | |
def __init__(self, | |
roots, | |
resolution: int = 64, | |
min_aesthetic_score: float = 5.0, | |
): | |
self.resolution = resolution | |
self.min_aesthetic_score = min_aesthetic_score | |
self.value_range = (0, 1) | |
super().__init__(roots) | |
def filter_metadata(self, metadata): | |
stats = {} | |
metadata = metadata[metadata[f'voxelized']] | |
stats['Voxelized'] = len(metadata) | |
metadata = metadata[metadata['aesthetic_score'] >= self.min_aesthetic_score] | |
stats[f'Aesthetic score >= {self.min_aesthetic_score}'] = len(metadata) | |
return metadata, stats | |
def get_instance(self, root, instance): | |
position = utils3d.io.read_ply(os.path.join(root, 'voxels', f'{instance}.ply'))[0] | |
coords = ((torch.tensor(position) + 0.5) * self.resolution).int().contiguous() | |
ss = torch.zeros(1, self.resolution, self.resolution, self.resolution, dtype=torch.long) | |
ss[:, coords[:, 0], coords[:, 1], coords[:, 2]] = 1 | |
return {'ss': ss} | |
def visualize_sample(self, ss: Union[torch.Tensor, dict]): | |
ss = ss if isinstance(ss, torch.Tensor) else ss['ss'] | |
renderer = OctreeRenderer() | |
renderer.rendering_options.resolution = 512 | |
renderer.rendering_options.near = 0.8 | |
renderer.rendering_options.far = 1.6 | |
renderer.rendering_options.bg_color = (0, 0, 0) | |
renderer.rendering_options.ssaa = 4 | |
renderer.pipe.primitive = 'voxel' | |
# Build camera | |
yaws = [0, np.pi / 2, np.pi, 3 * np.pi / 2] | |
yaws_offset = np.random.uniform(-np.pi / 4, np.pi / 4) | |
yaws = [y + yaws_offset for y in yaws] | |
pitch = [np.random.uniform(-np.pi / 4, np.pi / 4) for _ in range(4)] | |
exts = [] | |
ints = [] | |
for yaw, pitch in zip(yaws, pitch): | |
orig = torch.tensor([ | |
np.sin(yaw) * np.cos(pitch), | |
np.cos(yaw) * np.cos(pitch), | |
np.sin(pitch), | |
]).float().cuda() * 2 | |
fov = torch.deg2rad(torch.tensor(30)).cuda() | |
extrinsics = utils3d.torch.extrinsics_look_at(orig, torch.tensor([0, 0, 0]).float().cuda(), torch.tensor([0, 0, 1]).float().cuda()) | |
intrinsics = utils3d.torch.intrinsics_from_fov_xy(fov, fov) | |
exts.append(extrinsics) | |
ints.append(intrinsics) | |
images = [] | |
# Build each representation | |
ss = ss.cuda() | |
for i in range(ss.shape[0]): | |
representation = Octree( | |
depth=10, | |
aabb=[-0.5, -0.5, -0.5, 1, 1, 1], | |
device='cuda', | |
primitive='voxel', | |
sh_degree=0, | |
primitive_config={'solid': True}, | |
) | |
coords = torch.nonzero(ss[i, 0], as_tuple=False) | |
representation.position = coords.float() / self.resolution | |
representation.depth = torch.full((representation.position.shape[0], 1), int(np.log2(self.resolution)), dtype=torch.uint8, device='cuda') | |
image = torch.zeros(3, 1024, 1024).cuda() | |
tile = [2, 2] | |
for j, (ext, intr) in enumerate(zip(exts, ints)): | |
res = renderer.render(representation, ext, intr, colors_overwrite=representation.position) | |
image[:, 512 * (j // tile[1]):512 * (j // tile[1] + 1), 512 * (j % tile[1]):512 * (j % tile[1] + 1)] = res['color'] | |
images.append(image) | |
return torch.stack(images) | |