Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,965 Bytes
04fa6ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 |
from abc import abstractmethod
import os
import time
import json
import torch
import torch.distributed as dist
from torch.utils.data import DataLoader
import numpy as np
from torchvision import utils
from torch.utils.tensorboard import SummaryWriter
from .utils import *
from ..utils.general_utils import *
from ..utils.data_utils import recursive_to_device, cycle, ResumableSampler
class Trainer:
"""
Base class for training.
"""
def __init__(self,
models,
dataset,
*,
output_dir,
load_dir,
step,
max_steps,
batch_size=None,
batch_size_per_gpu=None,
batch_split=None,
optimizer={},
lr_scheduler=None,
elastic=None,
grad_clip=None,
ema_rate=0.9999,
fp16_mode='inflat_all',
fp16_scale_growth=1e-3,
finetune_ckpt=None,
log_param_stats=False,
prefetch_data=True,
i_print=1000,
i_log=500,
i_sample=10000,
i_save=10000,
i_ddpcheck=10000,
**kwargs
):
assert batch_size is not None or batch_size_per_gpu is not None, 'Either batch_size or batch_size_per_gpu must be specified.'
self.models = models
self.dataset = dataset
self.batch_split = batch_split if batch_split is not None else 1
self.max_steps = max_steps
self.optimizer_config = optimizer
self.lr_scheduler_config = lr_scheduler
self.elastic_controller_config = elastic
self.grad_clip = grad_clip
self.ema_rate = [ema_rate] if isinstance(ema_rate, float) else ema_rate
self.fp16_mode = fp16_mode
self.fp16_scale_growth = fp16_scale_growth
self.log_param_stats = log_param_stats
self.prefetch_data = prefetch_data
if self.prefetch_data:
self._data_prefetched = None
self.output_dir = output_dir
self.i_print = i_print
self.i_log = i_log
self.i_sample = i_sample
self.i_save = i_save
self.i_ddpcheck = i_ddpcheck
if dist.is_initialized():
# Multi-GPU params
self.world_size = dist.get_world_size()
self.rank = dist.get_rank()
self.local_rank = dist.get_rank() % torch.cuda.device_count()
self.is_master = self.rank == 0
else:
# Single-GPU params
self.world_size = 1
self.rank = 0
self.local_rank = 0
self.is_master = True
self.batch_size = batch_size if batch_size_per_gpu is None else batch_size_per_gpu * self.world_size
self.batch_size_per_gpu = batch_size_per_gpu if batch_size_per_gpu is not None else batch_size // self.world_size
assert self.batch_size % self.world_size == 0, 'Batch size must be divisible by the number of GPUs.'
assert self.batch_size_per_gpu % self.batch_split == 0, 'Batch size per GPU must be divisible by batch split.'
self.init_models_and_more(**kwargs)
self.prepare_dataloader(**kwargs)
# Load checkpoint
self.step = 0
if load_dir is not None and step is not None:
self.load(load_dir, step)
elif finetune_ckpt is not None:
self.finetune_from(finetune_ckpt)
if self.is_master:
os.makedirs(os.path.join(self.output_dir, 'ckpts'), exist_ok=True)
os.makedirs(os.path.join(self.output_dir, 'samples'), exist_ok=True)
self.writer = SummaryWriter(os.path.join(self.output_dir, 'tb_logs'))
if self.world_size > 1:
self.check_ddp()
if self.is_master:
print('\n\nTrainer initialized.')
print(self)
@property
def device(self):
for _, model in self.models.items():
if hasattr(model, 'device'):
return model.device
return next(list(self.models.values())[0].parameters()).device
@abstractmethod
def init_models_and_more(self, **kwargs):
"""
Initialize models and more.
"""
pass
def prepare_dataloader(self, **kwargs):
"""
Prepare dataloader.
"""
self.data_sampler = ResumableSampler(
self.dataset,
shuffle=True,
)
self.dataloader = DataLoader(
self.dataset,
batch_size=self.batch_size_per_gpu,
num_workers=int(np.ceil(os.cpu_count() / torch.cuda.device_count())),
pin_memory=True,
drop_last=True,
persistent_workers=True,
collate_fn=self.dataset.collate_fn if hasattr(self.dataset, 'collate_fn') else None,
sampler=self.data_sampler,
)
self.data_iterator = cycle(self.dataloader)
@abstractmethod
def load(self, load_dir, step=0):
"""
Load a checkpoint.
Should be called by all processes.
"""
pass
@abstractmethod
def save(self):
"""
Save a checkpoint.
Should be called only by the rank 0 process.
"""
pass
@abstractmethod
def finetune_from(self, finetune_ckpt):
"""
Finetune from a checkpoint.
Should be called by all processes.
"""
pass
@abstractmethod
def run_snapshot(self, num_samples, batch_size=4, verbose=False, **kwargs):
"""
Run a snapshot of the model.
"""
pass
@torch.no_grad()
def visualize_sample(self, sample):
"""
Convert a sample to an image.
"""
if hasattr(self.dataset, 'visualize_sample'):
return self.dataset.visualize_sample(sample)
else:
return sample
@torch.no_grad()
def snapshot_dataset(self, num_samples=100):
"""
Sample images from the dataset.
"""
dataloader = torch.utils.data.DataLoader(
self.dataset,
batch_size=num_samples,
num_workers=0,
shuffle=True,
collate_fn=self.dataset.collate_fn if hasattr(self.dataset, 'collate_fn') else None,
)
data = next(iter(dataloader))
data = recursive_to_device(data, self.device)
vis = self.visualize_sample(data)
if isinstance(vis, dict):
save_cfg = [(f'dataset_{k}', v) for k, v in vis.items()]
else:
save_cfg = [('dataset', vis)]
for name, image in save_cfg:
utils.save_image(
image,
os.path.join(self.output_dir, 'samples', f'{name}.jpg'),
nrow=int(np.sqrt(num_samples)),
normalize=True,
value_range=self.dataset.value_range,
)
@torch.no_grad()
def snapshot(self, suffix=None, num_samples=64, batch_size=4, verbose=False):
"""
Sample images from the model.
NOTE: This function should be called by all processes.
"""
if self.is_master:
print(f'\nSampling {num_samples} images...', end='')
if suffix is None:
suffix = f'step{self.step:07d}'
# Assign tasks
num_samples_per_process = int(np.ceil(num_samples / self.world_size))
samples = self.run_snapshot(num_samples_per_process, batch_size=batch_size, verbose=verbose)
# Preprocess images
for key in list(samples.keys()):
if samples[key]['type'] == 'sample':
vis = self.visualize_sample(samples[key]['value'])
if isinstance(vis, dict):
for k, v in vis.items():
samples[f'{key}_{k}'] = {'value': v, 'type': 'image'}
del samples[key]
else:
samples[key] = {'value': vis, 'type': 'image'}
# Gather results
if self.world_size > 1:
for key in samples.keys():
samples[key]['value'] = samples[key]['value'].contiguous()
if self.is_master:
all_images = [torch.empty_like(samples[key]['value']) for _ in range(self.world_size)]
else:
all_images = []
dist.gather(samples[key]['value'], all_images, dst=0)
if self.is_master:
samples[key]['value'] = torch.cat(all_images, dim=0)[:num_samples]
# Save images
if self.is_master:
os.makedirs(os.path.join(self.output_dir, 'samples', suffix), exist_ok=True)
for key in samples.keys():
if samples[key]['type'] == 'image':
utils.save_image(
samples[key]['value'],
os.path.join(self.output_dir, 'samples', suffix, f'{key}_{suffix}.jpg'),
nrow=int(np.sqrt(num_samples)),
normalize=True,
value_range=self.dataset.value_range,
)
elif samples[key]['type'] == 'number':
min = samples[key]['value'].min()
max = samples[key]['value'].max()
images = (samples[key]['value'] - min) / (max - min)
images = utils.make_grid(
images,
nrow=int(np.sqrt(num_samples)),
normalize=False,
)
save_image_with_notes(
images,
os.path.join(self.output_dir, 'samples', suffix, f'{key}_{suffix}.jpg'),
notes=f'{key} min: {min}, max: {max}',
)
if self.is_master:
print(' Done.')
@abstractmethod
def update_ema(self):
"""
Update exponential moving average.
Should only be called by the rank 0 process.
"""
pass
@abstractmethod
def check_ddp(self):
"""
Check if DDP is working properly.
Should be called by all process.
"""
pass
@abstractmethod
def training_losses(**mb_data):
"""
Compute training losses.
"""
pass
def load_data(self):
"""
Load data.
"""
if self.prefetch_data:
if self._data_prefetched is None:
self._data_prefetched = recursive_to_device(next(self.data_iterator), self.device, non_blocking=True)
data = self._data_prefetched
self._data_prefetched = recursive_to_device(next(self.data_iterator), self.device, non_blocking=True)
else:
data = recursive_to_device(next(self.data_iterator), self.device, non_blocking=True)
# if the data is a dict, we need to split it into multiple dicts with batch_size_per_gpu
if isinstance(data, dict):
if self.batch_split == 1:
data_list = [data]
else:
batch_size = list(data.values())[0].shape[0]
data_list = [
{k: v[i * batch_size // self.batch_split:(i + 1) * batch_size // self.batch_split] for k, v in data.items()}
for i in range(self.batch_split)
]
elif isinstance(data, list):
data_list = data
else:
raise ValueError('Data must be a dict or a list of dicts.')
return data_list
@abstractmethod
def run_step(self, data_list):
"""
Run a training step.
"""
pass
def run(self):
"""
Run training.
"""
if self.is_master:
print('\nStarting training...')
self.snapshot_dataset()
if self.step == 0:
self.snapshot(suffix='init')
else: # resume
self.snapshot(suffix=f'resume_step{self.step:07d}')
log = []
time_last_print = 0.0
time_elapsed = 0.0
while self.step < self.max_steps:
time_start = time.time()
data_list = self.load_data()
step_log = self.run_step(data_list)
time_end = time.time()
time_elapsed += time_end - time_start
self.step += 1
# Print progress
if self.is_master and self.step % self.i_print == 0:
speed = self.i_print / (time_elapsed - time_last_print) * 3600
columns = [
f'Step: {self.step}/{self.max_steps} ({self.step / self.max_steps * 100:.2f}%)',
f'Elapsed: {time_elapsed / 3600:.2f} h',
f'Speed: {speed:.2f} steps/h',
f'ETA: {(self.max_steps - self.step) / speed:.2f} h',
]
print(' | '.join([c.ljust(25) for c in columns]), flush=True)
time_last_print = time_elapsed
# Check ddp
if self.world_size > 1 and self.i_ddpcheck is not None and self.step % self.i_ddpcheck == 0:
self.check_ddp()
# Sample images
if self.step % self.i_sample == 0:
self.snapshot()
if self.is_master:
log.append((self.step, {}))
# Log time
log[-1][1]['time'] = {
'step': time_end - time_start,
'elapsed': time_elapsed,
}
# Log losses
if step_log is not None:
log[-1][1].update(step_log)
# Log scale
if self.fp16_mode == 'amp':
log[-1][1]['scale'] = self.scaler.get_scale()
elif self.fp16_mode == 'inflat_all':
log[-1][1]['log_scale'] = self.log_scale
# Save log
if self.step % self.i_log == 0:
## save to log file
log_str = '\n'.join([
f'{step}: {json.dumps(log)}' for step, log in log
])
with open(os.path.join(self.output_dir, 'log.txt'), 'a') as log_file:
log_file.write(log_str + '\n')
# show with mlflow
log_show = [l for _, l in log if not dict_any(l, lambda x: np.isnan(x))]
log_show = dict_reduce(log_show, lambda x: np.mean(x))
log_show = dict_flatten(log_show, sep='/')
for key, value in log_show.items():
self.writer.add_scalar(key, value, self.step)
log = []
# Save checkpoint
if self.step % self.i_save == 0:
self.save()
if self.is_master:
self.snapshot(suffix='final')
self.writer.close()
print('Training finished.')
def profile(self, wait=2, warmup=3, active=5):
"""
Profile the training loop.
"""
with torch.profiler.profile(
schedule=torch.profiler.schedule(wait=wait, warmup=warmup, active=active, repeat=1),
on_trace_ready=torch.profiler.tensorboard_trace_handler(os.path.join(self.output_dir, 'profile')),
profile_memory=True,
with_stack=True,
) as prof:
for _ in range(wait + warmup + active):
self.run_step()
prof.step()
|