File size: 5,650 Bytes
87b3c4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
from typing import *
import torch
import torch.nn as nn
import torch.nn.functional as F
from ...modules import sparse as sp
from ...utils.random_utils import hammersley_sequence
from .base import SparseTransformerBase
from ...representations import Gaussian
from ..sparse_elastic_mixin import SparseTransformerElasticMixin


class SLatGaussianDecoder(SparseTransformerBase):
    def __init__(

        self,

        resolution: int,

        model_channels: int,

        latent_channels: int,

        num_blocks: int,

        num_heads: Optional[int] = None,

        num_head_channels: Optional[int] = 64,

        mlp_ratio: float = 4,

        attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "swin",

        window_size: int = 8,

        pe_mode: Literal["ape", "rope"] = "ape",

        use_fp16: bool = False,

        use_checkpoint: bool = False,

        qk_rms_norm: bool = False,

        representation_config: dict = None,

    ):
        super().__init__(
            in_channels=latent_channels,
            model_channels=model_channels,
            num_blocks=num_blocks,
            num_heads=num_heads,
            num_head_channels=num_head_channels,
            mlp_ratio=mlp_ratio,
            attn_mode=attn_mode,
            window_size=window_size,
            pe_mode=pe_mode,
            use_fp16=use_fp16,
            use_checkpoint=use_checkpoint,
            qk_rms_norm=qk_rms_norm,
        )
        self.resolution = resolution
        self.rep_config = representation_config
        self._calc_layout()
        self.out_layer = sp.SparseLinear(model_channels, self.out_channels)
        self._build_perturbation()

        self.initialize_weights()
        if use_fp16:
            self.convert_to_fp16()

    def initialize_weights(self) -> None:
        super().initialize_weights()
        # Zero-out output layers:
        nn.init.constant_(self.out_layer.weight, 0)
        nn.init.constant_(self.out_layer.bias, 0)

    def _build_perturbation(self) -> None:
        perturbation = [hammersley_sequence(3, i, self.rep_config['num_gaussians']) for i in range(self.rep_config['num_gaussians'])]
        perturbation = torch.tensor(perturbation).float() * 2 - 1
        perturbation = perturbation / self.rep_config['voxel_size']
        perturbation = torch.atanh(perturbation).to(self.device)
        self.register_buffer('offset_perturbation', perturbation)

    def _calc_layout(self) -> None:
        self.layout = {
            '_xyz' : {'shape': (self.rep_config['num_gaussians'], 3), 'size': self.rep_config['num_gaussians'] * 3},
            '_features_dc' : {'shape': (self.rep_config['num_gaussians'], 1, 3), 'size': self.rep_config['num_gaussians'] * 3},
            '_scaling' : {'shape': (self.rep_config['num_gaussians'], 3), 'size': self.rep_config['num_gaussians'] * 3},
            '_rotation' : {'shape': (self.rep_config['num_gaussians'], 4), 'size': self.rep_config['num_gaussians'] * 4},
            '_opacity' : {'shape': (self.rep_config['num_gaussians'], 1), 'size': self.rep_config['num_gaussians']},
        }
        start = 0
        for k, v in self.layout.items():
            v['range'] = (start, start + v['size'])
            start += v['size']
        self.out_channels = start
    
    def to_representation(self, x: sp.SparseTensor) -> List[Gaussian]:
        """

        Convert a batch of network outputs to 3D representations.



        Args:

            x: The [N x * x C] sparse tensor output by the network.



        Returns:

            list of representations

        """
        ret = []
        for i in range(x.shape[0]):
            representation = Gaussian(
                sh_degree=0,
                aabb=[-0.5, -0.5, -0.5, 1.0, 1.0, 1.0],
                mininum_kernel_size = self.rep_config['3d_filter_kernel_size'],
                scaling_bias = self.rep_config['scaling_bias'],
                opacity_bias = self.rep_config['opacity_bias'],
                scaling_activation = self.rep_config['scaling_activation']
            )
            xyz = (x.coords[x.layout[i]][:, 1:].float() + 0.5) / self.resolution
            for k, v in self.layout.items():
                if k == '_xyz':
                    offset = x.feats[x.layout[i]][:, v['range'][0]:v['range'][1]].reshape(-1, *v['shape'])
                    offset = offset * self.rep_config['lr'][k]
                    if self.rep_config['perturb_offset']:
                        offset = offset + self.offset_perturbation
                    offset = torch.tanh(offset) / self.resolution * 0.5 * self.rep_config['voxel_size']
                    _xyz = xyz.unsqueeze(1) + offset
                    setattr(representation, k, _xyz.flatten(0, 1))
                else:
                    feats = x.feats[x.layout[i]][:, v['range'][0]:v['range'][1]].reshape(-1, *v['shape']).flatten(0, 1)
                    feats = feats * self.rep_config['lr'][k]
                    setattr(representation, k, feats)
            ret.append(representation)
        return ret

    def forward(self, x: sp.SparseTensor) -> List[Gaussian]:
        h = super().forward(x)
        h = h.type(x.dtype)
        h = h.replace(F.layer_norm(h.feats, h.feats.shape[-1:]))
        h = self.out_layer(h)
        return self.to_representation(h)
    

class ElasticSLatGaussianDecoder(SparseTransformerElasticMixin, SLatGaussianDecoder):
    """

    Slat VAE Gaussian decoder with elastic memory management.

    Used for training with low VRAM.

    """
    pass