# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved. # Copyright (c) 2024 Black Forest Labs and The XLabs-AI Team. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import Literal import torch from einops import rearrange, repeat from torch import Tensor from tqdm import tqdm from .model import Flux from .modules.conditioner import HFEmbedder def get_noise( num_samples: int, height: int, width: int, device: torch.device, dtype: torch.dtype, seed: int, ): return torch.randn( num_samples, 16, # allow for packing 2 * math.ceil(height / 16), 2 * math.ceil(width / 16), device=device, dtype=dtype, generator=torch.Generator(device=device).manual_seed(seed), ) def prepare( t5: HFEmbedder, clip: HFEmbedder, img: Tensor, prompt: str | list[str], ref_img: None | Tensor=None, pe: Literal['d', 'h', 'w', 'o'] ='d' ) -> dict[str, Tensor]: assert pe in ['d', 'h', 'w', 'o'] bs, c, h, w = img.shape if bs == 1 and not isinstance(prompt, str): bs = len(prompt) img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2) if img.shape[0] == 1 and bs > 1: img = repeat(img, "1 ... -> bs ...", bs=bs) img_ids = torch.zeros(h // 2, w // 2, 3) img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None] img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :] img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs) if ref_img is not None: _, _, ref_h, ref_w = ref_img.shape ref_img = rearrange(ref_img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2) if ref_img.shape[0] == 1 and bs > 1: ref_img = repeat(ref_img, "1 ... -> bs ...", bs=bs) ref_img_ids = torch.zeros(ref_h // 2, ref_w // 2, 3) # img id分别在宽高偏移各自最大值 h_offset = h // 2 if pe in {'d', 'h'} else 0 w_offset = w // 2 if pe in {'d', 'w'} else 0 ref_img_ids[..., 1] = ref_img_ids[..., 1] + torch.arange(ref_h // 2)[:, None] + h_offset ref_img_ids[..., 2] = ref_img_ids[..., 2] + torch.arange(ref_w // 2)[None, :] + w_offset ref_img_ids = repeat(ref_img_ids, "h w c -> b (h w) c", b=bs) if isinstance(prompt, str): prompt = [prompt] txt = t5(prompt) if txt.shape[0] == 1 and bs > 1: txt = repeat(txt, "1 ... -> bs ...", bs=bs) txt_ids = torch.zeros(bs, txt.shape[1], 3) vec = clip(prompt) if vec.shape[0] == 1 and bs > 1: vec = repeat(vec, "1 ... -> bs ...", bs=bs) if ref_img is not None: return { "img": img, "img_ids": img_ids.to(img.device), "ref_img": ref_img, "ref_img_ids": ref_img_ids.to(img.device), "txt": txt.to(img.device), "txt_ids": txt_ids.to(img.device), "vec": vec.to(img.device), } else: return { "img": img, "img_ids": img_ids.to(img.device), "txt": txt.to(img.device), "txt_ids": txt_ids.to(img.device), "vec": vec.to(img.device), } def prepare_multi_ip( t5: HFEmbedder, clip: HFEmbedder, img: Tensor, prompt: str | list[str], ref_imgs: list[Tensor] | None = None, pe: Literal['d', 'h', 'w', 'o'] = 'd' ) -> dict[str, Tensor]: assert pe in ['d', 'h', 'w', 'o'] bs, c, h, w = img.shape if bs == 1 and not isinstance(prompt, str): bs = len(prompt) img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2) if img.shape[0] == 1 and bs > 1: img = repeat(img, "1 ... -> bs ...", bs=bs) img_ids = torch.zeros(h // 2, w // 2, 3) img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None] img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :] img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs) ref_img_ids = [] ref_imgs_list = [] pe_shift_w, pe_shift_h = w // 2, h // 2 for ref_img in ref_imgs: _, _, ref_h1, ref_w1 = ref_img.shape ref_img = rearrange(ref_img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2) if ref_img.shape[0] == 1 and bs > 1: ref_img = repeat(ref_img, "1 ... -> bs ...", bs=bs) ref_img_ids1 = torch.zeros(ref_h1 // 2, ref_w1 // 2, 3) # img id分别在宽高偏移各自最大值 h_offset = pe_shift_h if pe in {'d', 'h'} else 0 w_offset = pe_shift_w if pe in {'d', 'w'} else 0 ref_img_ids1[..., 1] = ref_img_ids1[..., 1] + torch.arange(ref_h1 // 2)[:, None] + h_offset ref_img_ids1[..., 2] = ref_img_ids1[..., 2] + torch.arange(ref_w1 // 2)[None, :] + w_offset ref_img_ids1 = repeat(ref_img_ids1, "h w c -> b (h w) c", b=bs) ref_img_ids.append(ref_img_ids1) ref_imgs_list.append(ref_img) # 更新pe shift pe_shift_h += ref_h1 // 2 pe_shift_w += ref_w1 // 2 if isinstance(prompt, str): prompt = [prompt] txt = t5(prompt) if txt.shape[0] == 1 and bs > 1: txt = repeat(txt, "1 ... -> bs ...", bs=bs) txt_ids = torch.zeros(bs, txt.shape[1], 3) vec = clip(prompt) if vec.shape[0] == 1 and bs > 1: vec = repeat(vec, "1 ... -> bs ...", bs=bs) return { "img": img, "img_ids": img_ids.to(img.device), "ref_img": tuple(ref_imgs_list), "ref_img_ids": [ref_img_id.to(img.device) for ref_img_id in ref_img_ids], "txt": txt.to(img.device), "txt_ids": txt_ids.to(img.device), "vec": vec.to(img.device), } def time_shift(mu: float, sigma: float, t: Tensor): return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma) def get_lin_function( x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15 ): m = (y2 - y1) / (x2 - x1) b = y1 - m * x1 return lambda x: m * x + b def get_schedule( num_steps: int, image_seq_len: int, base_shift: float = 0.5, max_shift: float = 1.15, shift: bool = True, ) -> list[float]: # extra step for zero timesteps = torch.linspace(1, 0, num_steps + 1) # shifting the schedule to favor high timesteps for higher signal images if shift: # eastimate mu based on linear estimation between two points mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len) timesteps = time_shift(mu, 1.0, timesteps) return timesteps.tolist() def denoise( model: Flux, # model input img: Tensor, img_ids: Tensor, txt: Tensor, txt_ids: Tensor, vec: Tensor, # sampling parameters timesteps: list[float], guidance: float = 4.0, ref_img: Tensor=None, ref_img_ids: Tensor=None, ): i = 0 guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype) for t_curr, t_prev in tqdm(zip(timesteps[:-1], timesteps[1:]), total=len(timesteps) - 1): t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device) pred = model( img=img, img_ids=img_ids, ref_img=ref_img, ref_img_ids=ref_img_ids, txt=txt, txt_ids=txt_ids, y=vec, timesteps=t_vec, guidance=guidance_vec ) img = img + (t_prev - t_curr) * pred i += 1 return img def unpack(x: Tensor, height: int, width: int) -> Tensor: return rearrange( x, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=math.ceil(height / 16), w=math.ceil(width / 16), ph=2, pw=2, )