# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gradio as gr from inference.pipeline import RealCustomInferencePipeline def create_demo(): pipeline = RealCustomInferencePipeline( unet_config="configs/realcustom_sigdino_highres.json", unet_checkpoint="ckpts/sdxl/unet/sdxl-unet.bin", realcustom_checkpoint="ckpts/realcustom/RealCustom_highres.pth", vae_config="ckpts/sdxl/vae/sdxl.json", vae_checkpoint="ckpts/sdxl/vae/sdxl-vae.pth", model_type="fp32", device="cpu", ) badges_text = r"""
Build Build
""".strip() with gr.Blocks() as demo: gr.Markdown(f"# RealCustom") gr.Markdown(badges_text) with gr.Row(): with gr.Column(): prompt = gr.Textbox(label="Prompt", value="") target_phrase = gr.Textbox(label="Target Phrase", value="") with gr.Row(): image_prompt = gr.Image(label="Ref Img", visible=True, interactive=True, type="pil") with gr.Row(): with gr.Column(): width = gr.Slider(512, 2048, 1024, step=16, label="Gneration Width") height = gr.Slider(512, 2048, 1024, step=16, label="Gneration Height") with gr.Accordion("Advanced Options", open=False): with gr.Row(): guidance = gr.Slider(1.0, 15, 3.5, step=0.5, label="Guidance Scale", interactive=True) mask_scope = gr.Slider(0.05, 1.0, 0.2, step=0.05, label="Mask Scope", interactive=True) seed = gr.Number(0, label="Seed (-1 for random)") num = gr.Number(4, label="Generation Number") new_unet_local_path = gr.Textbox(label="New Unet Local Path", value="") new_realcustom_local_path = gr.Textbox(label="New RealCustom Local Path", value="") generate_btn = gr.Button("Generate") with gr.Column(): output_image = gr.Image(label="Generated Image") output_mask = gr.Image(label="Guidance Mask") inputs = [ prompt, image_prompt, target_phrase, height, width, guidance, seed, num, mask_scope, new_unet_local_path, new_realcustom_local_path, ] generate_btn.click( fn=pipeline.generation, inputs=inputs, outputs=[output_image, output_mask], ) return demo if __name__ == "__main__": demo = create_demo() demo.launch(server_name='0.0.0.0', server_port=7860)