# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import List import torch def get_betas(name: str, num_steps: int = 1000, shift_snr: float = 1, terminal_pure_noise: bool = False): # Get betas max_beta = 1 if terminal_pure_noise else 0.999 if name == "squared_linear": betas = torch.linspace(0.00085**0.5, 0.012**0.5, num_steps) ** 2 elif name == "cosine": betas = get_cosine_betas(num_steps, max_beta=max_beta) elif name == "alphas_cumprod_linear": betas = get_alphas_cumprod_linear_betas(num_steps, max_beta=max_beta) elif name == "sigmoid": betas = get_sigmoid_betas(num_steps, max_beta=max_beta, square=True, slop=0.7) else: raise NotImplementedError # Shift snr betas = shift_betas_by_snr_factor(betas, shift_snr) # Ensure terminal pure noise # Only non-cosine schedule uses rescale, cosine schedule can directly set max_beta=1 to ensure temrinal pure noise. if name == "squared_linear" and terminal_pure_noise: betas = rescale_betas_to_ensure_terminal_pure_noise(betas) return betas def validate_betas(betas: List[float]) -> bool: """ Validate betas is monotonic and within 0 to 1 range, i.e. 0 < beta_{t-1} < beta_{t} <= 1 Args: betas (List[float]): betas Returns: bool: True if betas is correct """ return all(b1 < b2 for b1, b2 in zip(betas, betas[1:])) and betas[0] > 0 and betas[-1] <= 1 def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar_fn, max_beta=0.999): betas = [] for i in range(num_diffusion_timesteps): t1 = i / num_diffusion_timesteps t2 = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) if not validate_betas(betas): import logging logging.warning("No feasible betas for given alpha bar") return torch.tensor(betas, dtype=torch.float32) def get_cosine_betas(num_diffusion_timesteps, max_beta=0.999) -> torch.Tensor: def alpha_bar_fn(time_step): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2 return betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar_fn, max_beta) def get_sigmoid_betas(num_diffusion_timesteps, max_beta, square=False, slop=1): def alpha_bar_fn(t): def sigmoid(x): return 1 / (1 + math.exp(-x * slop)) s = 6 # (-6, 6) from geodiff vb = sigmoid(-s) ve = sigmoid(s) return ((sigmoid(s - t * 2 * s) - vb) / (ve - vb))**(1 if not square else 2) return betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar_fn, max_beta) def get_alphas_cumprod_linear_betas(num_diffusion_timesteps, max_beta): def alpha_bar_fn(t): return 1 - t return betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar_fn, max_beta=max_beta) def shift_betas_by_snr_factor(betas: torch.Tensor, factor: float) -> torch.Tensor: if factor == 1.0: return betas # Convert betas to snr alphas = 1 - betas alphas_cumprod = alphas.cumprod(dim=0) snr = alphas_cumprod / (1 - alphas_cumprod) # Shift snr snr *= factor # Convert snr to betas alphas_cumprod = snr / (1 + snr) alphas = torch.cat( [alphas_cumprod[0:1], alphas_cumprod[1:] / alphas_cumprod[:-1]]) betas = 1 - alphas return betas def rescale_betas_to_ensure_terminal_pure_noise(betas: torch.Tensor) -> torch.Tensor: # Convert betas to alphas_cumprod_sqrt alphas = 1 - betas alphas_cumprod = alphas.cumprod(0) alphas_cumprod_sqrt = alphas_cumprod.sqrt() # Rescale alphas_cumprod_sqrt such that alphas_cumprod_sqrt[0] remains unchanged but alphas_cumprod_sqrt[-1] = 0 alphas_cumprod_sqrt = (alphas_cumprod_sqrt - alphas_cumprod_sqrt[-1]) / ( alphas_cumprod_sqrt[0] - alphas_cumprod_sqrt[-1]) * alphas_cumprod_sqrt[0] # Convert alphas_cumprod_sqrt to betas alphas_cumprod = alphas_cumprod_sqrt ** 2 alphas = torch.cat( [alphas_cumprod[0:1], alphas_cumprod[1:] / alphas_cumprod[:-1]]) betas = 1 - alphas return betas