# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. def find_phrase_positions_in_text(text, phrase): """ Return the position of the first character of the phrase in the text. """ position = -1 positions = [] while True: position = text.find(phrase, position + 1) if position == -1: break positions.append(position) return positions def classifier_free_guidance_image_prompt_cascade( pred_t_cond, pred_ti_cond, pred_uncond, guidance_weight_t=7.5, guidance_weight_i=7.5, guidance_stdev_rescale_factor=0.7, cfg_rescale_mode="none", super_cross_mask=None ): if cfg_rescale_mode == "none": pred = pred_uncond + guidance_weight_t * (pred_t_cond - pred_uncond) + guidance_weight_i * (pred_ti_cond - pred_t_cond) elif cfg_rescale_mode == "none_direct": pred = pred_uncond + guidance_weight_i * (pred_ti_cond - pred_uncond) elif cfg_rescale_mode == "naive": assert super_cross_mask is not None pred_std_t_before = pred_t_cond.std([1, 2, 3], keepdim=True) pred_std_ti_before = pred_ti_cond.std([1, 2, 3], keepdim=True) pred = pred_uncond + guidance_weight_t * (pred_t_cond - pred_uncond) + guidance_weight_i * (pred_ti_cond - pred_t_cond) pred_std_after = pred.std([1, 2, 3], keepdim=True) pred_rescale_t_factor = guidance_stdev_rescale_factor * (pred_std_t_before / pred_std_after) + (1 - guidance_stdev_rescale_factor) pred_rescale_ti_factor = guidance_stdev_rescale_factor * (pred_std_ti_before / pred_std_after) + (1 - guidance_stdev_rescale_factor) pred_ti = pred * super_cross_mask pred_t = pred * (1 - super_cross_mask) pred = pred_ti * pred_rescale_ti_factor + pred_t * pred_rescale_t_factor elif cfg_rescale_mode == "naive_global": pred_std_ti_before = pred_ti_cond.std([1, 2, 3], keepdim=True) pred = pred_uncond + guidance_weight_t * (pred_t_cond - pred_uncond) + guidance_weight_i * (pred_ti_cond - pred_t_cond) pred_std_after = pred.std([1, 2, 3], keepdim=True) pred_rescale_ti_factor = guidance_stdev_rescale_factor * (pred_std_ti_before / pred_std_after) + (1 - guidance_stdev_rescale_factor) pred = pred * pred_rescale_ti_factor elif cfg_rescale_mode == "naive_global_direct": pred_std_ti_before = pred_ti_cond.std([1, 2, 3], keepdim=True) pred = pred_uncond + guidance_weight_i * (pred_ti_cond - pred_uncond) pred_std_after = pred.std([1, 2, 3], keepdim=True) pred_rescale_ti_factor = guidance_stdev_rescale_factor * (pred_std_ti_before / pred_std_after) + (1 - guidance_stdev_rescale_factor) pred = pred * pred_rescale_ti_factor else: raise NotImplementedError() return pred