Spaces:
Runtime error
Runtime error
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from .base import * | |
class DPMSolverSingleStepScheduler(Scheduler): | |
def __init__( | |
self, | |
# Generic scheduler settings | |
num_train_timesteps: int, | |
num_inference_timesteps: int, | |
betas: torch.Tensor, | |
inference_timesteps: Union[str, List[int]] = "trailing", | |
set_alpha_to_one: bool = True, | |
device: Optional[Union[str, torch.device]] = None, | |
dtype: torch.dtype = torch.float32, | |
# DPM scheduler settings | |
algorithm_type: str = "dpmsolver++", | |
solver_type: str = "midpoint", | |
solver_order: int = 2, | |
lower_order_final: bool = True, | |
): | |
super().__init__( | |
num_train_timesteps=num_train_timesteps, | |
num_inference_timesteps=num_inference_timesteps, | |
betas=betas, | |
inference_timesteps=inference_timesteps, | |
set_alpha_to_one=set_alpha_to_one, | |
device=device, | |
dtype=dtype, | |
) | |
self.solver_order = solver_order | |
self.solver_type = solver_type | |
self.lower_order_final = lower_order_final | |
self.algorithm_type = algorithm_type | |
self.alpha_t = torch.sqrt(self.alphas_cumprod) | |
self.sigma_t = torch.sqrt(1 - self.alphas_cumprod) | |
self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t) | |
self.reset() | |
def reset(self): | |
self.model_outputs = [None] * self.solver_order | |
self.sample = None | |
self.order_list = self.get_order_list() | |
self.last_step_index = None | |
def get_order_list(self) -> List[int]: | |
steps = self.num_inference_timesteps | |
order = self.solver_order | |
# First step must be order 1 | |
# Second step must be order 1 in case of terminal zero SNR | |
orders = [1] + [(i % order) + 1 for i in range(steps - 1)] + [1] | |
# Last step should be order 1 for better quality. | |
if self.lower_order_final: | |
orders[-1] = 1 | |
return orders | |
def dpm_solver_first_order_update( | |
self, | |
model_output: torch.FloatTensor, | |
timestep: int, | |
prev_timestep: int, | |
sample: torch.FloatTensor, | |
) -> torch.FloatTensor: | |
lambda_t, lambda_s = self.lambda_t[prev_timestep], self.lambda_t[timestep] | |
alpha_t, alpha_s = self.alpha_t[prev_timestep], self.alpha_t[timestep] | |
sigma_t, sigma_s = self.sigma_t[prev_timestep], self.sigma_t[timestep] | |
h = lambda_t - lambda_s | |
if self.algorithm_type == "dpmsolver++": | |
x_t = (sigma_t / sigma_s) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * model_output | |
elif self.algorithm_type == "dpmsolver": | |
x_t = (alpha_t / alpha_s) * sample - (sigma_t * (torch.exp(h) - 1.0)) * model_output | |
return x_t | |
def singlestep_dpm_solver_second_order_update( | |
self, | |
model_output_list: List[torch.FloatTensor], | |
timestep_list: List[int], | |
prev_timestep: int, | |
sample: torch.FloatTensor, | |
) -> torch.FloatTensor: | |
t, s0, s1 = prev_timestep, timestep_list[-1], timestep_list[-2] | |
m0, m1 = model_output_list[-1], model_output_list[-2] | |
lambda_t, lambda_s0, lambda_s1 = self.lambda_t[t], self.lambda_t[s0], self.lambda_t[s1] | |
alpha_t, alpha_s1 = self.alpha_t[t], self.alpha_t[s1] | |
sigma_t, sigma_s1 = self.sigma_t[t], self.sigma_t[s1] | |
h, h_0 = lambda_t - lambda_s1, lambda_s0 - lambda_s1 | |
r0 = h_0 / h | |
D0, D1 = m1, (1.0 / r0) * (m0 - m1) | |
if self.algorithm_type == "dpmsolver++": | |
# See https://arxiv.org/abs/2211.01095 for detailed derivations | |
if self.solver_type == "midpoint": | |
x_t = ( | |
(sigma_t / sigma_s1) * sample | |
- (alpha_t * (torch.exp(-h) - 1.0)) * D0 | |
- 0.5 * (alpha_t * (torch.exp(-h) - 1.0)) * D1 | |
) | |
elif self.solver_type == "heun": | |
x_t = ( | |
(sigma_t / sigma_s1) * sample | |
- (alpha_t * (torch.exp(-h) - 1.0)) * D0 | |
+ (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1 | |
) | |
elif self.algorithm_type == "dpmsolver": | |
# See https://arxiv.org/abs/2206.00927 for detailed derivations | |
if self.solver_type == "midpoint": | |
x_t = ( | |
(alpha_t / alpha_s1) * sample | |
- (sigma_t * (torch.exp(h) - 1.0)) * D0 | |
- 0.5 * (sigma_t * (torch.exp(h) - 1.0)) * D1 | |
) | |
elif self.solver_type == "heun": | |
x_t = ( | |
(alpha_t / alpha_s1) * sample | |
- (sigma_t * (torch.exp(h) - 1.0)) * D0 | |
- (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1 | |
) | |
return x_t | |
def singlestep_dpm_solver_third_order_update( | |
self, | |
model_output_list: List[torch.FloatTensor], | |
timestep_list: List[int], | |
prev_timestep: int, | |
sample: torch.FloatTensor, | |
) -> torch.FloatTensor: | |
t, s0, s1, s2 = prev_timestep, timestep_list[-1], timestep_list[-2], timestep_list[-3] | |
m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3] | |
lambda_t, lambda_s0, lambda_s1, lambda_s2 = ( | |
self.lambda_t[t], | |
self.lambda_t[s0], | |
self.lambda_t[s1], | |
self.lambda_t[s2], | |
) | |
alpha_t, alpha_s2 = self.alpha_t[t], self.alpha_t[s2] | |
sigma_t, sigma_s2 = self.sigma_t[t], self.sigma_t[s2] | |
h, h_0, h_1 = lambda_t - lambda_s2, lambda_s0 - lambda_s2, lambda_s1 - lambda_s2 | |
r0, r1 = h_0 / h, h_1 / h | |
D0 = m2 | |
D1_0, D1_1 = (1.0 / r1) * (m1 - m2), (1.0 / r0) * (m0 - m2) | |
D1 = (r0 * D1_0 - r1 * D1_1) / (r0 - r1) | |
D2 = 2.0 * (D1_1 - D1_0) / (r0 - r1) | |
if self.algorithm_type == "dpmsolver++": | |
# See https://arxiv.org/abs/2206.00927 for detailed derivations | |
if self.solver_type == "midpoint": | |
x_t = ( | |
(sigma_t / sigma_s2) * sample | |
- (alpha_t * (torch.exp(-h) - 1.0)) * D0 | |
+ (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1_1 | |
) | |
elif self.solver_type == "heun": | |
x_t = ( | |
(sigma_t / sigma_s2) * sample | |
- (alpha_t * (torch.exp(-h) - 1.0)) * D0 | |
+ (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1 | |
- (alpha_t * ((torch.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2 | |
) | |
elif self.algorithm_type == "dpmsolver": | |
# See https://arxiv.org/abs/2206.00927 for detailed derivations | |
if self.solver_type == "midpoint": | |
x_t = ( | |
(alpha_t / alpha_s2) * sample | |
- (sigma_t * (torch.exp(h) - 1.0)) * D0 | |
- (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1_1 | |
) | |
elif self.solver_type == "heun": | |
x_t = ( | |
(alpha_t / alpha_s2) * sample | |
- (sigma_t * (torch.exp(h) - 1.0)) * D0 | |
- (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1 | |
- (sigma_t * ((torch.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2 | |
) | |
return x_t | |
def step( | |
self, | |
model_output: torch.FloatTensor, | |
model_output_type: str, | |
timestep: int, | |
sample: torch.FloatTensor, | |
) -> SchedulerStepOutput: | |
step_index = (self.timesteps == timestep).nonzero().item() | |
# Check if this step is the follow-up of the previous step. | |
# If not, then we reset and treat it as a new run. | |
if self.last_step_index and self.last_step_index != step_index - 1: | |
self.reset() | |
self.last_step_index = step_index | |
prev_timestep = 0 if step_index == len(self.timesteps) - 1 else self.timesteps[step_index + 1] | |
model_output_convert = self.convert_output(model_output, model_output_type, sample, timestep) | |
if self.algorithm_type == "dpmsolver++": | |
model_output = model_output_convert.pred_original_sample | |
else: | |
model_output = model_output_convert.pred_epsilon | |
for i in range(self.solver_order - 1): | |
self.model_outputs[i] = self.model_outputs[i + 1] | |
self.model_outputs[-1] = model_output | |
order = self.order_list[step_index] | |
# For img2img denoising might start with order>1 which is not possible | |
# In this case make sure that the first two steps are both order=1 | |
while self.model_outputs[-order] is None: | |
order -= 1 | |
# For single-step solvers, we use the initial value at each time with order = 1. | |
if order == 1: | |
self.sample = sample | |
timestep_list = [self.timesteps[step_index - i] for i in range(order - 1, 0, -1)] + [timestep] | |
if order == 1: | |
prev_sample = self.dpm_solver_first_order_update(self.model_outputs[-1], timestep_list[-1], prev_timestep, self.sample) | |
elif order == 2: | |
prev_sample = self.singlestep_dpm_solver_second_order_update(self.model_outputs, timestep_list, prev_timestep, self.sample) | |
elif order == 3: | |
prev_sample = self.singlestep_dpm_solver_third_order_update(self.model_outputs, timestep_list, prev_timestep, self.sample) | |
else: | |
raise NotImplementedError | |
return SchedulerStepOutput( | |
prev_sample=prev_sample, | |
pred_original_sample=model_output_convert.pred_original_sample | |
) | |