File size: 8,254 Bytes
7cc4b41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
import torchvision
import torch.nn as nn
from einops import rearrange

from models.sigclip import SigLIPViTBackbone
from models.dino import DinoViTBackbone

class ShallowDeepSiglipDinoEncoder(nn.Module):
    def __init__(self, siglip_config={}, dino_config={}):
        super().__init__()
        self.to_pil = torchvision.transforms.ToPILImage()
        self.image_encoder_siglip = SigLIPViTBackbone(**siglip_config)
        self.image_encoder_dino = DinoViTBackbone(**dino_config)
    
    def forward(self, image_tensor, device="cpu"):
        bs = image_tensor.size(0)        
        # tensor 转 PIL
        pixel_values = []
        for image_tensor_i in image_tensor:
            pixel_values.append(self.to_pil(image_tensor_i))

        embeddings = []
        embeddings_siglip_list = self.image_encoder_siglip(pixel_values, device)
        embeddings_dino_list = self.image_encoder_dino(pixel_values, device)
        for embeddings_siglip_i, embeddings_dino_i in zip(embeddings_siglip_list, embeddings_dino_list):
            embeddings_i = torch.cat([embeddings_siglip_i, embeddings_dino_i], dim=-1) # channel concat
            embeddings.append(embeddings_i)

        return embeddings

# The default is to use double the image size, i.e., 768x768.
class ShallowDeepPatchfySiglipDinoEncoder(nn.Module):
    def __init__(self, siglip_config={}, dino_config={}, patchfy_scale=2, default_image_size=384):
        super().__init__()
        self.to_pil = torchvision.transforms.ToPILImage()
        self.image_encoder_siglip = SigLIPViTBackbone(**siglip_config)
        self.image_encoder_dino = DinoViTBackbone(**dino_config)

        self.patchfy = (patchfy_scale > 1)
        self.patchfy_scale = patchfy_scale
        self.default_image_size = default_image_size
    
    def forward(self, image_tensor, device="cpu", **kwargs): # input image size = 768
        image_tensor = image_tensor["image_ref"] # this is a dict
        bs = image_tensor.size(0)

        if self.patchfy:
            image_local = rearrange(image_tensor, "b c (h hp) (w wp) -> (b hp wp) c h w", hp=self.patchfy_scale, wp=self.patchfy_scale)
            image_global = torch.nn.functional.interpolate(image_tensor, size=(self.default_image_size, self.default_image_size), mode='bilinear', align_corners=True)
        
            # tensor 转 PIL
            pixel_values_local, pixel_values_global = [], []
            for image_tensor_i in image_local:
                pixel_values_local.append(self.to_pil(image_tensor_i.to(torch.float)))
            for image_tensor_i in image_global:
                pixel_values_global.append(self.to_pil(image_tensor_i.to(torch.float)))

            embeddings = []
            embeddings_siglip_list = self.image_encoder_siglip(pixel_values_global, device)
            embeddings_dino_list = self.image_encoder_dino(pixel_values_global, device)
            for embeddings_siglip_i, embeddings_dino_i in zip(embeddings_siglip_list, embeddings_dino_list):
                embeddings_i = torch.cat([embeddings_siglip_i, embeddings_dino_i], dim=-1) # channel concat
                embeddings.append(embeddings_i)
            
            embeddings_local_siglip_deep = self.image_encoder_siglip(pixel_values_local, device)[-1]
            embeddings_local_dino_deep = self.image_encoder_dino(pixel_values_local, device)[-1]
            embeddings_local_deep = torch.cat([embeddings_local_siglip_deep, embeddings_local_dino_deep], dim=-1)

            embeddings_local_deep = rearrange(embeddings_local_deep, "(b hp wp) l c -> b (l hp wp) c", hp=self.patchfy_scale, wp=self.patchfy_scale)

            embeddings.append(embeddings_local_deep)
        
        else:
            # tensor 转 PIL
            pixel_values = []
            for image_tensor_i in image_tensor:
                pixel_values.append(self.to_pil(image_tensor_i))
            
            embeddings = []
            embeddings_siglip_list = self.image_encoder_siglip(pixel_values, device)
            embeddings_dino_list = self.image_encoder_dino(pixel_values, device)
            for embeddings_siglip_i, embeddings_dino_i in zip(embeddings_siglip_list, embeddings_dino_list):
                # 逐层concat的方式
                embeddings_i = torch.cat([embeddings_siglip_i, embeddings_dino_i], dim=-1) # channel concat
                embeddings.append(embeddings_i)
        
        if len(embeddings) == 1:
            embeddings = embeddings[0]
        return embeddings


class ShallowDeepPatchfySiglipDinoEncoder_v2(nn.Module):
    def __init__(self, siglip_config={}, dino_config={}, patchfy_scale=2, default_image_size=384):
        super().__init__()
        self.to_pil = torchvision.transforms.ToPILImage()
        self.image_encoder_siglip = SigLIPViTBackbone(**siglip_config)
        self.image_encoder_dino = DinoViTBackbone(**dino_config)

        self.patchfy = (patchfy_scale > 1)
        self.patchfy_scale = patchfy_scale
        self.default_image_size = default_image_size
    
    def forward(self, image_tensor_dict, device="cpu", **kwargs): # input image size = 768
        image_tensor = image_tensor_dict["image_ref"]
        bs = image_tensor.size(0)

        if self.patchfy:
            image_local = rearrange(image_tensor, "b c (h hp) (w wp) -> (b hp wp) c h w", hp=self.patchfy_scale, wp=self.patchfy_scale)
            image_global = torch.nn.functional.interpolate(image_tensor, size=(self.default_image_size, self.default_image_size), mode='bilinear', align_corners=True)
        
            pixel_values_local, pixel_values_global = [], []
            for image_tensor_i in image_local:
                pixel_values_local.append(self.to_pil(image_tensor_i.to(torch.float32)))
            for image_tensor_i in image_global:
                pixel_values_global.append(self.to_pil(image_tensor_i.to(torch.float32)))

            embeddings = []
            embeddings_siglip_list = self.image_encoder_siglip(pixel_values_global, device)
            embeddings_dino_list = self.image_encoder_dino(pixel_values_global, device)
            for embeddings_siglip_i, embeddings_dino_i in zip(embeddings_siglip_list, embeddings_dino_list):
                embeddings_i = torch.cat([embeddings_siglip_i, embeddings_dino_i], dim=-1) # channel concat
                embeddings.append(embeddings_i)
            
            embeddings_local_siglip_deep = self.image_encoder_siglip(pixel_values_local, device)[-1]
            embeddings_local_dino_deep = self.image_encoder_dino(pixel_values_local, device)[-1]
            embeddings_local_deep = torch.cat([embeddings_local_siglip_deep, embeddings_local_dino_deep], dim=-1)

            embeddings_local_deep = rearrange(embeddings_local_deep, "(b hp wp) l c -> b (l hp wp) c", hp=self.patchfy_scale, wp=self.patchfy_scale)

            embeddings.append(embeddings_local_deep)
        
        else:
            # tensor 转 PIL
            pixel_values = []
            for image_tensor_i in image_tensor:
                pixel_values.append(self.to_pil(image_tensor_i))
            
            embeddings = []
            embeddings_siglip_list = self.image_encoder_siglip(pixel_values, device)
            embeddings_dino_list = self.image_encoder_dino(pixel_values, device)
            for embeddings_siglip_i, embeddings_dino_i in zip(embeddings_siglip_list, embeddings_dino_list):
                embeddings_i = torch.cat([embeddings_siglip_i, embeddings_dino_i], dim=-1) # channel concat
                embeddings.append(embeddings_i)
        
        if len(embeddings) == 1:
            embeddings = embeddings[0]
        return embeddings