Spaces:
Runtime error
Runtime error
File size: 14,600 Bytes
7cc4b41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import torch
import json
import os
import torchvision
from torchvision.utils import make_grid
from torchvision.transforms.functional import to_pil_image
from tqdm import tqdm
from PIL import Image
from models.text import TextModel
from models.vae import AutoencoderKL
from models.unet_2d_condition_custom import UNet2DConditionModel as UNet2DConditionModelDiffusers
from schedulers.ddim import DDIMScheduler
from schedulers.dpm_s import DPMSolverSingleStepScheduler
from schedulers.utils import get_betas
from inference_utils import find_phrase_positions_in_text, classifier_free_guidance_image_prompt_cascade
from mask_generation import mask_generation
from utils import instantiate_from_config
# Argument parser
parser = argparse.ArgumentParser()
parser.add_argument("--width", type=int, default=512)
parser.add_argument("--height", type=int, default=512)
parser.add_argument("--samples_per_prompt", type=int, required=True)
parser.add_argument("--nrow", type=int, default=4)
parser.add_argument("--sample_steps", type=int, required=True)
parser.add_argument("--schedule_type", type=str, default="squared_linear") # default, `squared_linear
parser.add_argument("--scheduler_type", type=str, default="dpm", choices=["ddim", "dpm"]) # default, "dpm"
parser.add_argument("--schedule_shift_snr", type=float, default=1) # default, 1
parser.add_argument("--text_encoder_variant", type=str, nargs="+")
parser.add_argument("--vae_config", type=str, default="configs/vae.json") # default
parser.add_argument("--vae_checkpoint", type=str, required=True)
parser.add_argument("--unet_config", type=str, required=True)
parser.add_argument("--unet_checkpoint", type=str, required=True)
parser.add_argument("--unet_checkpoint_base_model", type=str, default="")
parser.add_argument("--unet_prediction", type=str, choices=DDIMScheduler.prediction_types, default="epsilon") # default, "epsilon"
parser.add_argument("--negative_prompt", type=str, default="prompts/validation_negative.txt") # default
parser.add_argument("--compile", action="store_true", default=False)
parser.add_argument("--output_dir", type=str, required=True)
parser.add_argument("--guidance_weight", type=float, default=7.5)
parser.add_argument("--seed", type=int, default=666)
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--text_prompt", type=str, required=True)
parser.add_argument("--image_prompt_path", type=str, required=True)
parser.add_argument("--target_phrase", type=str, required=True)
parser.add_argument("--mask_scope", type=float, default=0.20)
parser.add_argument("--mask_strategy", type=str, nargs="+", default=["max_norm"])
parser.add_argument("--mask_reused_step", type=int, default=12)
args = parser.parse_args()
# Initialize unet model
with open(args.unet_config) as unet_config_file:
unet_config = json.load(unet_config_file)
# Settings for image encoder
vision_model_config = unet_config.pop("vision_model_config", None)
args.vision_model_config = vision_model_config.pop("vision_model_config", None)
unet_type = unet_config.pop("type", None)
unet_model = UNet2DConditionModelDiffusers(**unet_config)
unet_model.eval().to(args.device)
unet_model.load_state_dict(torch.load(args.unet_checkpoint, map_location=args.device), strict=False)
print("loading unet model finished.")
if args.unet_checkpoint_base_model != "":
if "safetensors" in args.unet_checkpoint_base_model:
from safetensors import safe_open
tensors = {}
with safe_open(args.unet_checkpoint_base_model, framework="pt", device='cpu') as f:
for k in f.keys():
new_k = k.replace("model.diffusion_model.", "")
tensors[k] = f.get_tensor(k)
unet_model.load_state_dict(tensors, strict=False)
else:
unet_model.load_state_dict(torch.load(args.unet_checkpoint_base_model, map_location=args.device), strict=False)
unet_model = torch.compile(unet_model, disable=not args.compile)
print("loading unet base model finished.")
# Initialize vae model
with open(args.vae_config) as vae_config_file:
vae_config = json.load(vae_config_file)
vae_downsample_factor = 2 ** (len(vae_config["block_out_channels"]) - 1) # 2 ** 3 = 8
vae_model = AutoencoderKL(**vae_config)
vae_model.eval().to(args.device)
vae_model.load_state_dict(torch.load(args.vae_checkpoint, map_location=args.device))
vae_decoder = torch.compile(lambda x: vae_model.decode(x / vae_model.scaling_factor).sample.clip(-1, 1), disable=not args.compile)
vae_encoder = torch.compile(lambda x: vae_model.encode(x).latent_dist.mode().mul_(vae_model.scaling_factor), disable=not args.compile)
print("loading vae finished.")
# Initialize ddim scheduler
ddim_train_steps = 1000
ddim_betas = get_betas(name=args.schedule_type, num_steps=ddim_train_steps, shift_snr=args.schedule_shift_snr, terminal_pure_noise=False)
scheduler_class = DPMSolverSingleStepScheduler if args.scheduler_type == 'dpm' else DDIMScheduler
scheduler = scheduler_class(betas=ddim_betas, num_train_timesteps=ddim_train_steps, num_inference_timesteps=args.sample_steps, device=args.device)
infer_timesteps = scheduler.timesteps
# Initialize text model
text_model = TextModel(args.text_encoder_variant, ["penultimate_nonorm"])
text_model.eval().to(args.device)
print("loading text model finished.")
# Initialize image model.
vision_model = instantiate_from_config(args.vision_model_config)
vision_model = vision_model.eval().to(args.device)
print("loading image model finished.")
negative_prompt = ""
if args.negative_prompt:
with open(args.negative_prompt) as f:
negative_prompt = f.read().strip()
image_metadata_validate = torch.tensor(
data=[
args.width, # original_height
args.height, # original_width
0, # coordinate top
0, # coordinate left
args.width, # target_height
args.height, # target_width
],
device=args.device,
dtype=torch.float32
).view(1, -1).repeat(args.samples_per_prompt, 1)
# Create output directory
os.makedirs(args.output_dir, exist_ok=True)
args.output_image_grid_dir = os.path.join(args.output_dir, "images_grid")
args.output_image_dir = os.path.join(args.output_dir, "images")
args.output_mask_grid_dir = os.path.join(args.output_dir, "masks_grid")
args.output_mask_dir = os.path.join(args.output_dir, "masks")
os.makedirs(args.output_image_grid_dir, exist_ok=True)
os.makedirs(args.output_image_dir, exist_ok=True)
os.makedirs(args.output_mask_grid_dir, exist_ok=True)
os.makedirs(args.output_mask_dir, exist_ok=True)
with torch.no_grad():
# Prepare negative prompt.
if args.guidance_weight != 1:
text_negative_output = text_model(negative_prompt)
positive_prompt = args.text_prompt
positive_promt_image_path = args.image_prompt_path
target_phrase = args.target_phrase
# Compute target phrases
target_token = torch.zeros(1, 77).to(args.device)
positions = find_phrase_positions_in_text(positive_prompt, target_phrase)
for position in positions:
prompt_before = positive_prompt[:position] # NOTE We do not need -1 here because the SDXL text encoder does not encode the trailing space.
prompt_include = positive_prompt[:position+len(target_phrase)]
print("prompt before: ", prompt_before, ", prompt_include: ", prompt_include)
prompt_before_length = text_model.get_vaild_token_length(prompt_before) + 1
prompt_include_length = text_model.get_vaild_token_length(prompt_include) + 1
print("prompt_before_length: ", prompt_before_length, ", prompt_include_length: ", prompt_include_length)
target_token[:, prompt_before_length:prompt_include_length] = 1
# Text used for progress bar
pbar_text = positive_prompt[:40]
# Compute text embeddings
text_positive_output = text_model(positive_prompt)
text_positive_embeddings = text_positive_output.embeddings.repeat_interleave(args.samples_per_prompt, dim=0)
text_positive_pooled = text_positive_output.pooled[-1].repeat_interleave(args.samples_per_prompt, dim=0)
if args.guidance_weight != 1:
text_negative_embeddings = text_negative_output.embeddings.repeat_interleave(args.samples_per_prompt, dim=0)
text_negative_pooled = text_negative_output.pooled[-1].repeat_interleave(args.samples_per_prompt, dim=0)
# Compute image embeddings
positive_image = Image.open(positive_promt_image_path).convert("RGB")
positive_image = torchvision.transforms.ToTensor()(positive_image)
positive_image = positive_image.unsqueeze(0).repeat_interleave(args.samples_per_prompt, dim=0)
positive_image = torch.nn.functional.interpolate(
positive_image,
size=(768, 768),
mode="bilinear",
align_corners=False
)
negative_image = torch.zeros_like(positive_image)
print(positive_image.size(), negative_image.size())
positive_image = positive_image.to(args.device)
negative_image = negative_image.to(args.device)
positive_image_dict = {"image_ref": positive_image}
positive_image_output = vision_model(positive_image_dict, device=args.device)
negative_image_dict = {"image_ref": negative_image}
negative_image_output = vision_model(negative_image_dict, device=args.device)
# Initialize latent with input latent + noise (i2i) / pure noise (t2i)
latent = torch.randn(
size=[
args.samples_per_prompt,
vae_config["latent_channels"],
args.height // vae_downsample_factor,
args.width // vae_downsample_factor
],
device=args.device,
generator=torch.Generator(args.device).manual_seed(args.seed))
target_h = (args.height // vae_downsample_factor) // 2
target_w = (args.width // vae_downsample_factor) // 2
# Real Reverse diffusion process.
text2image_crossmap_2d_all_timesteps_list = []
current_step = 0
for timestep in tqdm(iterable=infer_timesteps, desc=f"[{pbar_text}]", dynamic_ncols=True):
if current_step < args.mask_reused_step:
pred_cond, pred_cond_dict = unet_model(
sample=latent,
timestep=timestep,
encoder_hidden_states=text_positive_embeddings,
encoder_attention_mask=None,
added_cond_kwargs=dict(
text_embeds=text_positive_pooled,
time_ids=image_metadata_validate
),
vision_input_dict=None,
vision_guided_mask=None,
return_as_origin=False,
return_text2image_mask=True,
)
crossmap_2d_avg = mask_generation(
crossmap_2d_list=pred_cond_dict["text2image_crossmap_2d"], selfmap_2d_list=pred_cond_dict.get("self_attention_map", []),
target_token=target_token, mask_scope=args.mask_scope,
mask_target_h=target_h, mask_target_w=target_w, mask_mode=args.mask_strategy,
)
else:
# using previous step's mask
crossmap_2d_avg = text2image_crossmap_2d_all_timesteps_list[-1].squeeze(1)
if crossmap_2d_avg.dim() == 5: # Means that each layer uses a separate mask weight.
text2image_crossmap_2d_all_timesteps_list.append(crossmap_2d_avg.mean(dim=2).unsqueeze(1))
else:
text2image_crossmap_2d_all_timesteps_list.append(crossmap_2d_avg.unsqueeze(1))
pred_cond, pred_cond_dict = unet_model(
sample=latent,
timestep=timestep,
encoder_hidden_states=text_positive_embeddings,
encoder_attention_mask=None,
added_cond_kwargs=dict(
text_embeds=text_positive_pooled,
time_ids=image_metadata_validate
),
vision_input_dict=positive_image_output,
vision_guided_mask=crossmap_2d_avg,
return_as_origin=False,
return_text2image_mask=True,
multiple_reference_image=False
)
crossmap_2d_avg_neg = crossmap_2d_avg.mean(dim=1, keepdim=True)
pred_negative, pred_negative_dict = unet_model(
sample=latent,
timestep=timestep,
encoder_hidden_states=text_negative_embeddings,
encoder_attention_mask=None,
added_cond_kwargs=dict(
text_embeds=text_negative_pooled,
time_ids=image_metadata_validate
),
vision_input_dict=negative_image_output,
vision_guided_mask=crossmap_2d_avg,
return_as_origin=False,
return_text2image_mask=True,
multiple_reference_image=False
)
pred = classifier_free_guidance_image_prompt_cascade(
pred_t_cond=None, pred_ti_cond=pred_cond, pred_uncond=pred_negative,
guidance_weight_t=args.guidance_weight, guidance_weight_i=args.guidance_weight,
guidance_stdev_rescale_factor=0, cfg_rescale_mode="naive_global_direct"
)
step = scheduler.step(
model_output=pred,
model_output_type=args.unet_prediction,
timestep=timestep,
sample=latent)
latent = step.prev_sample
current_step += 1
sample = vae_decoder(step.pred_original_sample)
# save each image
for sample_i in range(sample.size(0)):
sample_i_image = torch.clamp(sample[sample_i] * 0.5 + 0.5, min=0, max=1).float()
to_pil_image(sample_i_image).save(args.output_image_dir + "/output_{}.jpg".format(sample_i))
# save grid images
sample = make_grid(sample, normalize=True, value_range=(-1, 1), nrow=args.nrow).float()
to_pil_image(sample).save(args.output_image_grid_dir + "/grid_image.jpg") |