File size: 14,600 Bytes
7cc4b41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import torch
import json
import os
import torchvision
from torchvision.utils import make_grid
from torchvision.transforms.functional import to_pil_image
from tqdm import tqdm
from PIL import Image

from models.text import TextModel
from models.vae import AutoencoderKL

from models.unet_2d_condition_custom import UNet2DConditionModel as UNet2DConditionModelDiffusers
from schedulers.ddim import DDIMScheduler
from schedulers.dpm_s import DPMSolverSingleStepScheduler
from schedulers.utils import get_betas

from inference_utils import find_phrase_positions_in_text, classifier_free_guidance_image_prompt_cascade
from mask_generation import mask_generation
from utils import instantiate_from_config

# Argument parser
parser = argparse.ArgumentParser()
parser.add_argument("--width", type=int, default=512)
parser.add_argument("--height", type=int, default=512)

parser.add_argument("--samples_per_prompt", type=int, required=True)
parser.add_argument("--nrow", type=int, default=4)
parser.add_argument("--sample_steps", type=int, required=True)
parser.add_argument("--schedule_type", type=str, default="squared_linear")                                            # default, `squared_linear
parser.add_argument("--scheduler_type", type=str, default="dpm", choices=["ddim", "dpm"])                             # default, "dpm"
parser.add_argument("--schedule_shift_snr", type=float, default=1)                                                    # default, 1

parser.add_argument("--text_encoder_variant", type=str, nargs="+")
parser.add_argument("--vae_config", type=str, default="configs/vae.json")                                             # default
parser.add_argument("--vae_checkpoint", type=str, required=True)
parser.add_argument("--unet_config", type=str, required=True)
parser.add_argument("--unet_checkpoint", type=str, required=True)
parser.add_argument("--unet_checkpoint_base_model", type=str, default="")
parser.add_argument("--unet_prediction", type=str, choices=DDIMScheduler.prediction_types, default="epsilon")          # default, "epsilon"

parser.add_argument("--negative_prompt", type=str, default="prompts/validation_negative.txt")                          # default

parser.add_argument("--compile", action="store_true", default=False)
parser.add_argument("--output_dir", type=str, required=True)

parser.add_argument("--guidance_weight", type=float, default=7.5)
parser.add_argument("--seed", type=int, default=666)
parser.add_argument("--device", type=str, default="cuda")

parser.add_argument("--text_prompt", type=str, required=True)
parser.add_argument("--image_prompt_path", type=str, required=True)
parser.add_argument("--target_phrase", type=str, required=True)
parser.add_argument("--mask_scope", type=float, default=0.20)
parser.add_argument("--mask_strategy",  type=str, nargs="+", default=["max_norm"])
parser.add_argument("--mask_reused_step", type=int, default=12)

args = parser.parse_args()

# Initialize unet model
with open(args.unet_config) as unet_config_file:
    unet_config = json.load(unet_config_file)

    # Settings for image encoder
    vision_model_config = unet_config.pop("vision_model_config", None)
    args.vision_model_config = vision_model_config.pop("vision_model_config", None)

    unet_type = unet_config.pop("type", None)
    unet_model = UNet2DConditionModelDiffusers(**unet_config)

unet_model.eval().to(args.device)
unet_model.load_state_dict(torch.load(args.unet_checkpoint, map_location=args.device), strict=False)
print("loading unet model finished.")

if args.unet_checkpoint_base_model != "":
    if "safetensors" in args.unet_checkpoint_base_model:
        from safetensors import safe_open
        tensors = {}
        with safe_open(args.unet_checkpoint_base_model, framework="pt", device='cpu') as f:
            for k in f.keys():
                new_k = k.replace("model.diffusion_model.", "")
                tensors[k] = f.get_tensor(k)
        unet_model.load_state_dict(tensors, strict=False)
    else:
        unet_model.load_state_dict(torch.load(args.unet_checkpoint_base_model, map_location=args.device), strict=False)
unet_model = torch.compile(unet_model, disable=not args.compile)
print("loading unet base model finished.")

# Initialize vae model
with open(args.vae_config) as vae_config_file:
    vae_config = json.load(vae_config_file)
vae_downsample_factor = 2 ** (len(vae_config["block_out_channels"]) - 1) # 2 ** 3 = 8
vae_model = AutoencoderKL(**vae_config)
vae_model.eval().to(args.device)
vae_model.load_state_dict(torch.load(args.vae_checkpoint, map_location=args.device))
vae_decoder = torch.compile(lambda x: vae_model.decode(x / vae_model.scaling_factor).sample.clip(-1, 1), disable=not args.compile)
vae_encoder = torch.compile(lambda x: vae_model.encode(x).latent_dist.mode().mul_(vae_model.scaling_factor), disable=not args.compile)
print("loading vae finished.")

# Initialize ddim scheduler
ddim_train_steps = 1000
ddim_betas = get_betas(name=args.schedule_type, num_steps=ddim_train_steps, shift_snr=args.schedule_shift_snr, terminal_pure_noise=False)
scheduler_class = DPMSolverSingleStepScheduler if args.scheduler_type == 'dpm' else DDIMScheduler
scheduler = scheduler_class(betas=ddim_betas, num_train_timesteps=ddim_train_steps, num_inference_timesteps=args.sample_steps, device=args.device)
infer_timesteps = scheduler.timesteps

# Initialize text model
text_model = TextModel(args.text_encoder_variant, ["penultimate_nonorm"])
text_model.eval().to(args.device)
print("loading text model finished.")

# Initialize image model.
vision_model = instantiate_from_config(args.vision_model_config)
vision_model = vision_model.eval().to(args.device)
print("loading image model finished.")

negative_prompt = ""
if args.negative_prompt:
    with open(args.negative_prompt) as f:
        negative_prompt = f.read().strip()

image_metadata_validate = torch.tensor(
    data=[
        args.width,     # original_height
        args.height,    # original_width
        0,              # coordinate top
        0,              # coordinate left
        args.width,     # target_height
        args.height,    # target_width
    ],
    device=args.device,
    dtype=torch.float32
).view(1, -1).repeat(args.samples_per_prompt, 1)

# Create output directory
os.makedirs(args.output_dir, exist_ok=True)
args.output_image_grid_dir = os.path.join(args.output_dir, "images_grid")
args.output_image_dir = os.path.join(args.output_dir, "images")
args.output_mask_grid_dir = os.path.join(args.output_dir, "masks_grid")
args.output_mask_dir = os.path.join(args.output_dir, "masks")
os.makedirs(args.output_image_grid_dir, exist_ok=True)
os.makedirs(args.output_image_dir, exist_ok=True)
os.makedirs(args.output_mask_grid_dir, exist_ok=True)
os.makedirs(args.output_mask_dir, exist_ok=True)

with torch.no_grad():
    # Prepare negative prompt.
    if args.guidance_weight != 1:
        text_negative_output = text_model(negative_prompt)

    positive_prompt = args.text_prompt
    positive_promt_image_path = args.image_prompt_path
    target_phrase = args.target_phrase

    # Compute target phrases
    target_token = torch.zeros(1, 77).to(args.device)
    positions = find_phrase_positions_in_text(positive_prompt, target_phrase)
    for position in positions:
        prompt_before = positive_prompt[:position] # NOTE We do not need -1 here because the SDXL text encoder does not encode the trailing space.
        prompt_include = positive_prompt[:position+len(target_phrase)]
        print("prompt before: ", prompt_before, ", prompt_include: ", prompt_include)
        prompt_before_length = text_model.get_vaild_token_length(prompt_before) + 1
        prompt_include_length = text_model.get_vaild_token_length(prompt_include) + 1
        print("prompt_before_length: ", prompt_before_length, ", prompt_include_length: ", prompt_include_length)
        target_token[:, prompt_before_length:prompt_include_length] = 1

    # Text used for progress bar
    pbar_text = positive_prompt[:40]

    # Compute text embeddings
    text_positive_output = text_model(positive_prompt)
    text_positive_embeddings = text_positive_output.embeddings.repeat_interleave(args.samples_per_prompt, dim=0)
    text_positive_pooled = text_positive_output.pooled[-1].repeat_interleave(args.samples_per_prompt, dim=0)
    if args.guidance_weight != 1:
        text_negative_embeddings = text_negative_output.embeddings.repeat_interleave(args.samples_per_prompt, dim=0)
        text_negative_pooled = text_negative_output.pooled[-1].repeat_interleave(args.samples_per_prompt, dim=0)
    
    # Compute image embeddings
    positive_image = Image.open(positive_promt_image_path).convert("RGB")
    positive_image = torchvision.transforms.ToTensor()(positive_image)

    positive_image = positive_image.unsqueeze(0).repeat_interleave(args.samples_per_prompt, dim=0)
    positive_image = torch.nn.functional.interpolate(
        positive_image, 
        size=(768, 768), 
        mode="bilinear", 
        align_corners=False
    )
    negative_image = torch.zeros_like(positive_image)
    print(positive_image.size(), negative_image.size())
    positive_image = positive_image.to(args.device)
    negative_image = negative_image.to(args.device)

    positive_image_dict = {"image_ref": positive_image}
    positive_image_output = vision_model(positive_image_dict, device=args.device)

    negative_image_dict = {"image_ref": negative_image}
    negative_image_output = vision_model(negative_image_dict, device=args.device)

    # Initialize latent with input latent + noise (i2i) / pure noise (t2i)
    latent = torch.randn(
        size=[
            args.samples_per_prompt,
            vae_config["latent_channels"],
            args.height // vae_downsample_factor,
            args.width // vae_downsample_factor
        ],
        device=args.device,
        generator=torch.Generator(args.device).manual_seed(args.seed))
    target_h = (args.height // vae_downsample_factor) // 2
    target_w = (args.width // vae_downsample_factor) // 2

    # Real Reverse diffusion process.
    text2image_crossmap_2d_all_timesteps_list = []
    current_step = 0
    for timestep in tqdm(iterable=infer_timesteps, desc=f"[{pbar_text}]", dynamic_ncols=True):
        if current_step < args.mask_reused_step:
            pred_cond, pred_cond_dict = unet_model(
                sample=latent,
                timestep=timestep,
                encoder_hidden_states=text_positive_embeddings,
                encoder_attention_mask=None,
                added_cond_kwargs=dict(
                    text_embeds=text_positive_pooled,
                    time_ids=image_metadata_validate
                ),
                vision_input_dict=None,
                vision_guided_mask=None,
                return_as_origin=False,
                return_text2image_mask=True,
            )
            crossmap_2d_avg = mask_generation(
                crossmap_2d_list=pred_cond_dict["text2image_crossmap_2d"], selfmap_2d_list=pred_cond_dict.get("self_attention_map", []), 
                target_token=target_token, mask_scope=args.mask_scope,
                mask_target_h=target_h, mask_target_w=target_w, mask_mode=args.mask_strategy,
            )
        else:
            # using previous step's mask
            crossmap_2d_avg = text2image_crossmap_2d_all_timesteps_list[-1].squeeze(1)
        if crossmap_2d_avg.dim() == 5: # Means that each layer uses a separate mask weight.
            text2image_crossmap_2d_all_timesteps_list.append(crossmap_2d_avg.mean(dim=2).unsqueeze(1))
        else:
            text2image_crossmap_2d_all_timesteps_list.append(crossmap_2d_avg.unsqueeze(1))

        pred_cond, pred_cond_dict = unet_model(
            sample=latent,
            timestep=timestep,
            encoder_hidden_states=text_positive_embeddings,
            encoder_attention_mask=None,
            added_cond_kwargs=dict(
                text_embeds=text_positive_pooled,
                time_ids=image_metadata_validate
            ),
            vision_input_dict=positive_image_output,
            vision_guided_mask=crossmap_2d_avg,
            return_as_origin=False,
            return_text2image_mask=True,
            multiple_reference_image=False
        )

        crossmap_2d_avg_neg = crossmap_2d_avg.mean(dim=1, keepdim=True)
        pred_negative, pred_negative_dict = unet_model(
            sample=latent,
            timestep=timestep,
            encoder_hidden_states=text_negative_embeddings,
            encoder_attention_mask=None,
            added_cond_kwargs=dict(
                text_embeds=text_negative_pooled,
                time_ids=image_metadata_validate
            ),
            vision_input_dict=negative_image_output,
            vision_guided_mask=crossmap_2d_avg,
            return_as_origin=False,
            return_text2image_mask=True,
            multiple_reference_image=False
        )

        pred = classifier_free_guidance_image_prompt_cascade(
            pred_t_cond=None, pred_ti_cond=pred_cond, pred_uncond=pred_negative, 
            guidance_weight_t=args.guidance_weight, guidance_weight_i=args.guidance_weight, 
            guidance_stdev_rescale_factor=0, cfg_rescale_mode="naive_global_direct"
        )
        step = scheduler.step(
            model_output=pred,
            model_output_type=args.unet_prediction,
            timestep=timestep,
            sample=latent)

        latent = step.prev_sample

        current_step += 1

    sample = vae_decoder(step.pred_original_sample)

    # save each image 
    for sample_i in range(sample.size(0)):
        sample_i_image = torch.clamp(sample[sample_i] * 0.5 + 0.5, min=0, max=1).float()
        to_pil_image(sample_i_image).save(args.output_image_dir + "/output_{}.jpg".format(sample_i))

    # save grid images
    sample = make_grid(sample, normalize=True, value_range=(-1, 1), nrow=args.nrow).float()
    to_pil_image(sample).save(args.output_image_grid_dir + "/grid_image.jpg")