File size: 8,829 Bytes
1b97239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# Standard library imports
import math
from typing import Annotated, List, Dict

# Related third-party imports
import numpy as np


class SilenceStats:
    """
    A class to compute and analyze statistics for silence durations
    between speech segments.

    This class provides methods to compute common statistical metrics
    (mean, median, standard deviation, interquartile range) and thresholds
    based on silence durations.

    Attributes
    ----------
    silence_durations : List[float]
        A sorted list of silence durations.

    Methods
    -------
    from_segments(segments)
        Class method to create a SilenceStats instance from speech segments.
    median()
        Compute the median silence duration.
    mean()
        Compute the mean silence duration.
    std()
        Compute the standard deviation of silence durations.
    iqr()
        Compute the interquartile range (IQR) of silence durations.
    threshold_std(factor=0.95)
        Compute threshold based on standard deviation.
    threshold_median_iqr(factor=1.5)
        Compute threshold based on median + IQR.
    total_silence_above_threshold(threshold)
        Compute total silence above a given threshold.
    """

    def __init__(self, silence_durations: Annotated[List[float], "List of silence durations"]):
        """
        Initialize the SilenceStats class with a list of silence durations.

        Parameters
        ----------
        silence_durations : List[float]
            List of silence durations (non-negative values).
        """
        if not all(isinstance(x, (int, float)) and x >= 0 for x in silence_durations):
            raise ValueError("silence_durations must be a list of non-negative numbers.")
        self.silence_durations = sorted(silence_durations)

    @classmethod
    def from_segments(cls, segments: Annotated[List[Dict], "List of speech segments"]) -> "SilenceStats":
        """
        Create a SilenceStats instance from a list of speech segments.

        Parameters
        ----------
        segments : List[Dict]
            List of speech segments, where each segment contains 'start_time'
            and 'end_time' keys.

        Returns
        -------
        SilenceStats
            A SilenceStats instance with computed silence durations.

        Examples
        --------
        >>> segment = [{"start_time": 0, "end_time": 5}, {"start_time": 10, "end_time": 15}]
        >>> stat = SilenceStats.from_segments(segments)
        >>> stat.silence_durations
        [5]
        """
        segments_sorted = sorted(segments, key=lambda x: x['start_time'])
        durations = [
            segments_sorted[i + 1]['start_time'] - segments_sorted[i]['end_time']
            for i in range(len(segments_sorted) - 1)
            if (segments_sorted[i + 1]['start_time'] - segments_sorted[i]['end_time']) > 0
        ]
        return cls(durations)

    def median(self) -> Annotated[float, "Median of silence durations"]:
        """
        Compute the median silence duration.

        Returns
        -------
        float
            The median of the silence durations.
        """
        n = len(self.silence_durations)
        if n == 0:
            return 0.0
        mid = n // 2
        if n % 2 == 0:
            return (self.silence_durations[mid - 1] + self.silence_durations[mid]) / 2
        return self.silence_durations[mid]

    def mean(self) -> Annotated[float, "Mean of silence durations"]:
        """
        Compute the mean silence duration.

        Returns
        -------
        float
            The mean of the silence durations.
        """
        return sum(self.silence_durations) / len(self.silence_durations) if self.silence_durations else 0.0

    def std(self) -> Annotated[float, "Standard deviation of silence durations"]:
        """
        Compute the standard deviation of silence durations.

        Returns
        -------
        float
            The standard deviation of the silence durations.
        """
        n = len(self.silence_durations)
        if n == 0:
            return 0.0
        mu = self.mean()
        var = sum((x - mu) ** 2 for x in self.silence_durations) / n
        return math.sqrt(var)

    def iqr(self) -> Annotated[float, "Interquartile range (IQR) of silence durations"]:
        """
        Compute the Interquartile Range (IQR).

        Returns
        -------
        float
            The IQR of the silence durations.
        """
        if not self.silence_durations:
            return 0.0
        q1 = np.percentile(self.silence_durations, 25)
        q3 = np.percentile(self.silence_durations, 75)
        return q3 - q1

    def threshold_std(self, factor: Annotated[float, "Scaling factor for std threshold"] = 0.95) -> float:
        """
        Compute the threshold based on standard deviation.

        Parameters
        ----------
        factor : float, optional
            A scaling factor for the standard deviation, by default 0.95.

        Returns
        -------
        float
            Threshold based on standard deviation.
        """
        return self.std() * factor

    def threshold_median_iqr(self, factor: Annotated[float, "Scaling factor for IQR"] = 1.5) -> float:
        """
        Compute the threshold based on median and IQR.

        Parameters
        ----------
        factor : float, optional
            A scaling factor for the IQR, by default 1.5.

        Returns
        -------
        float
            Threshold based on median and IQR.
        """
        return self.median() + (self.iqr() * factor)

    def total_silence_above_threshold(
            self, threshold: Annotated[float, "Threshold value for silence"]
    ) -> Annotated[float, "Total silence above the threshold"]:
        """
        Compute the total silence above the given threshold.

        Parameters
        ----------
        threshold : float
            The threshold value to compare silence durations.

        Returns
        -------
        float
            Total silence duration above the threshold.
        """
        return sum(s for s in self.silence_durations if s >= threshold)


if __name__ == "__main__":
    final_ssm = {
        'ssm': [
            {'speaker': 'Customer', 'start_time': 8500, 'end_time': 9760, 'text': 'Hey, G-Chance, this is Jennifer. ',
             'index': 0, 'sentiment': 'Neutral', 'profane': False},
            {'speaker': 'CSR', 'start_time': 10660, 'end_time': 11560, 'text': 'Yes, hi, Jennifer. ', 'index': 1,
             'sentiment': 'Neutral', 'profane': False},
            {'speaker': 'CSR', 'start_time': 11620, 'end_time': 12380, 'text': "Good afternoon, ma'am. ", 'index': 2,
             'sentiment': 'Neutral', 'profane': False},
            {'speaker': 'CSR', 'start_time': 83880, 'end_time': 85460, 'text': 'Okay. ', 'index': 24,
             'sentiment': 'Neutral', 'profane': False},
            {'speaker': 'CSR', 'start_time': 85500, 'end_time': 85620, 'text': 'Yeah. ', 'index': 25,
             'sentiment': 'Neutral', 'profane': False},
            {'speaker': 'CSR', 'start_time': 86400, 'end_time': 90320,
             'text': "So I'll be sending this shipping documents right after this call. ", 'index': 26,
             'sentiment': 'Neutral', 'profane': False},
            {'speaker': 'CSR', 'start_time': 90400, 'end_time': 91160, 'text': 'Thank you so much. ', 'index': 27,
             'sentiment': 'Neutral', 'profane': False},
            {'speaker': 'Customer', 'start_time': 92060, 'end_time': 92680, 'text': 'Okay, thank you. ', 'index': 28,
             'sentiment': 'Neutral', 'profane': False},
            {'speaker': 'Customer', 'start_time': 93880, 'end_time': 98220, 'text': 'All right, bye-bye. ', 'index': 29,
             'sentiment': 'Neutral', 'profane': False}
        ],
        'summary': 'Gabby from Transplace AP Team called Jennifer to request copies of a carrier invoice, bill of '
                   'lading, and proof of delivery, and Jennifer provided her email for Gabby to send the shipping '
                   'documents.',
        'conflict': False,
        'topic': 'Invoice and Shipping Documents Request'
    }

    stats = SilenceStats.from_segments(final_ssm['ssm'])

    print("Mean:", stats.mean())
    print("Median:", stats.median())
    print("Std Dev:", stats.std())
    print("IQR:", stats.iqr())

    t_std = stats.threshold_std(factor=0.97)
    t_median_iqr = stats.threshold_median_iqr(factor=1.49)
    print("Threshold (std-based):", t_std)
    print("Threshold (median+IQR):", t_median_iqr)

    print("Total silence (std-based):", stats.total_silence_above_threshold(t_std))
    print("Total silence (median+IQR-based):", stats.total_silence_above_threshold(t_median_iqr))
    final_ssm["silence"] = t_std
    print(final_ssm)