Spaces:
Running
Running
File size: 25,920 Bytes
1b97239 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 |
# Standard library imports
import os
import wave
from typing import List, Dict, Annotated, Union, Tuple
# Related third-party imports
import nltk
import numpy as np
import soundfile as sf
from librosa.feature import mfcc
from scipy.fft import fft, fftfreq
class WordSpeakerMapper:
"""
Maps words to speakers based on timestamps and aligns speaker tags after punctuation restoration.
This class processes word timing information and assigns each word to a speaker
based on the provided speaker timestamps. Missing timestamps are handled, and each
word can be aligned to a speaker based on different reference points ('start', 'mid', or 'end').
After punctuation restoration, word-speaker mapping can be realigned to ensure consistency
within a sentence.
Attributes
----------
word_timestamps : List[Dict]
List of word timing information with 'start', 'end', and 'text' keys.
speaker_timestamps : List[List[int]]
List of speaker segments, where each segment contains [start_time, end_time, speaker_id].
word_speaker_mapping : List[Dict] or None
Processed word-to-speaker mappings.
Methods
-------
filter_missing_timestamps(word_timestamps, initial_timestamp=0, final_timestamp=None)
Fills in missing start and end timestamps in word timing data.
get_words_speaker_mapping(word_anchor_option='start')
Maps words to speakers based on word and speaker timestamps.
"""
def __init__(
self,
word_timestamps: Annotated[List[Dict], "List of word timing information"],
speaker_timestamps: Annotated[List[List[Union[int, float]]], "List of speaker segments"],
):
"""
Initializes the WordSpeakerMapper with word and speaker timestamps.
Parameters
----------
word_timestamps : List[Dict]
List of word timing information.
speaker_timestamps : List[List[int]]
List of speaker segments.
"""
self.word_timestamps = self.filter_missing_timestamps(word_timestamps)
self.speaker_timestamps = speaker_timestamps
self.word_speaker_mapping = None
def filter_missing_timestamps(
self,
word_timestamps: Annotated[List[Dict], "List of word timing information"],
initial_timestamp: Annotated[int, "Start time of the first word"] = 0,
final_timestamp: Annotated[int, "End time of the last word"] = None
) -> Annotated[List[Dict], "List of word timestamps with missing values filled"]:
"""
Fills in missing start and end timestamps.
Parameters
----------
word_timestamps : List[Dict]
List of word timing information that may contain missing timestamps.
initial_timestamp : int, optional
Start time of the first word, default is 0.
final_timestamp : int, optional
End time of the last word, if available.
Returns
-------
List[Dict]
List of word timestamps with missing values filled.
Examples
--------
>>> word_timestamp = [{'text': 'Hello', 'end': 1.2}]
>>> mapper = WordSpeakerMapper([], [])
>>> mapper.filter_missing_timestamps(word_timestamps)
[{'text': 'Hello', 'start': 0, 'end': 1.2}]
"""
if word_timestamps[0].get("start") is None:
word_timestamps[0]["start"] = initial_timestamp
word_timestamps[0]["end"] = self._get_next_start_timestamp(word_timestamps, 0, final_timestamp)
result = [word_timestamps[0]]
for i, ws in enumerate(word_timestamps[1:], start=1):
if "text" not in ws:
continue
if ws.get("start") is None:
ws["start"] = word_timestamps[i - 1]["end"]
ws["end"] = self._get_next_start_timestamp(word_timestamps, i, final_timestamp)
if ws["text"] is not None:
result.append(ws)
return result
@staticmethod
def _get_next_start_timestamp(
word_timestamps: Annotated[List[Dict], "List of word timing information"],
current_word_index: Annotated[int, "Index of the current word"],
final_timestamp: Annotated[int, "Final timestamp if needed"]
) -> Annotated[int, "Next start timestamp for filling missing values"]:
"""
Finds the next start timestamp to fill in missing values.
Parameters
----------
word_timestamps : List[Dict]
List of word timing information.
current_word_index : int
Index of the current word.
final_timestamp : int, optional
Final timestamp to use if no next timestamp is found.
Returns
-------
int
Next start timestamp for filling missing values.
Examples
--------
>>> word_timestamp = [{'start': 0.5, 'text': 'Hello'}, {'end': 2.0}]
>>> mapper = WordSpeakerMapper([], [])
>>> mapper._get_next_start_timestamp(word_timestamps, 0, 2)
"""
if current_word_index == len(word_timestamps) - 1:
return word_timestamps[current_word_index]["start"]
next_word_index = current_word_index + 1
while next_word_index < len(word_timestamps):
if word_timestamps[next_word_index].get("start") is None:
word_timestamps[current_word_index]["text"] += (
" " + word_timestamps[next_word_index]["text"]
)
word_timestamps[next_word_index]["text"] = None
next_word_index += 1
if next_word_index == len(word_timestamps):
return final_timestamp
else:
return word_timestamps[next_word_index]["start"]
return final_timestamp
def get_words_speaker_mapping(self, word_anchor_option='start') -> List[Dict]:
"""
Maps words to speakers based on their timestamps.
Parameters
----------
word_anchor_option : str, optional
Anchor point for word mapping ('start', 'mid', or 'end'), default is 'start'.
Returns
-------
List[Dict]
List of word-to-speaker mappings with timestamps and speaker IDs.
Examples
--------
>>> word_timestamps = [{'start': 0.5, 'end': 1.2, 'text': 'Hello'}]
>>> speaker_timestamps = [[0, 1000, 1]]
>>> mapper = WordSpeakerMapper(word_timestamps, speaker_timestamps)
>>> mapper.get_words_speaker_mapping()
[{'text': 'Hello', 'start_time': 500, 'end_time': 1200, 'speaker': 1}]
"""
def get_word_ts_anchor(start: int, end: int, option: str) -> int:
"""
Determines the anchor timestamp for a word.
Parameters
----------
start : int
Start time of the word in milliseconds.
end : int
End time of the word in milliseconds.
option : str
Anchor point for timestamp calculation ('start', 'mid', or 'end').
Returns
-------
int
Anchor timestamp for the word.
Examples
--------
>>> get_word_ts_anchor(500, 1200, 'mid')
850
"""
if option == "end":
return end
elif option == "mid":
return (start + end) // 2
return start
wrd_spk_mapping = []
turn_idx = 0
num_speaker_ts = len(self.speaker_timestamps)
for wrd_dict in self.word_timestamps:
ws, we, wrd = (
int(wrd_dict["start"] * 1000),
int(wrd_dict["end"] * 1000),
wrd_dict["text"],
)
wrd_pos = get_word_ts_anchor(ws, we, word_anchor_option)
sp = -1
while turn_idx < num_speaker_ts and wrd_pos > self.speaker_timestamps[turn_idx][1]:
turn_idx += 1
if turn_idx < num_speaker_ts and self.speaker_timestamps[turn_idx][0] <= wrd_pos <= \
self.speaker_timestamps[turn_idx][1]:
sp = self.speaker_timestamps[turn_idx][2]
elif turn_idx > 0:
sp = self.speaker_timestamps[turn_idx - 1][2]
wrd_spk_mapping.append(
{"text": wrd, "start_time": ws, "end_time": we, "speaker": sp}
)
self.word_speaker_mapping = wrd_spk_mapping
return self.word_speaker_mapping
def realign_with_punctuation(self, max_words_in_sentence: int = 50) -> None:
"""
Realigns word-speaker mapping after punctuation restoration.
This method ensures consistent speaker mapping within sentences by analyzing
punctuation and adjusting speaker labels for words that are part of the same sentence.
Parameters
----------
max_words_in_sentence : int, optional
Maximum number of words to consider for realignment in a sentence,
default is 50.
Examples
--------
>>> word_speaker_mapping = [
... {"text": "Hello", "speaker": "Speaker 1"},
... {"text": "world", "speaker": "Speaker 2"},
... {"text": ".", "speaker": "Speaker 2"},
... {"text": "How", "speaker": "Speaker 1"},
... {"text": "are", "speaker": "Speaker 1"},
... {"text": "you", "speaker": "Speaker 2"},
... {"text": "?", "speaker": "Speaker 2"}
... ]
>>> mapper = WordSpeakerMapper([], [])
>>> mapper.word_speaker_mapping = word_speaker_mapping
>>> mapper.realign_with_punctuation()
>>> print(mapper.word_speaker_mapping)
[{'text': 'Hello', 'speaker': 'Speaker 1'},
{'text': 'world', 'speaker': 'Speaker 1'},
{'text': '.', 'speaker': 'Speaker 1'},
{'text': 'How', 'speaker': 'Speaker 1'},
{'text': 'are', 'speaker': 'Speaker 1'},
{'text': 'you', 'speaker': 'Speaker 1'},
{'text': '?', 'speaker': 'Speaker 1'}]
"""
sentence_ending_punctuations = ".?!"
def is_word_sentence_end(word_index: Annotated[int, "Index of the word to check"]) -> Annotated[
bool, "True if the word is a sentence end, False otherwise"]:
"""
Checks if a word is the end of a sentence based on punctuation.
This method determines whether a word at the given index marks
the end of a sentence by checking if the last character of the
word is a sentence-ending punctuation (e.g., '.', '!', or '?').
Parameters
----------
word_index : int
Index of the word to check in the `word_speaker_mapping`.
Returns
-------
bool
True if the word at the given index is the end of a sentence,
False otherwise.
"""
return (
word_index >= 0
and self.word_speaker_mapping[word_index]["text"][-1] in sentence_ending_punctuations
)
wsp_len = len(self.word_speaker_mapping)
words_list = [wd['text'] for wd in self.word_speaker_mapping]
speaker_list = [wd['speaker'] for wd in self.word_speaker_mapping]
k = 0
while k < len(self.word_speaker_mapping):
if (
k < wsp_len - 1
and speaker_list[k] != speaker_list[k + 1]
and not is_word_sentence_end(k)
):
left_idx = self._get_first_word_idx_of_sentence(
k, words_list, speaker_list, max_words_in_sentence
)
right_idx = (
self._get_last_word_idx_of_sentence(
k, words_list, max_words_in_sentence - (k - left_idx) - 1
)
if left_idx > -1
else -1
)
if min(left_idx, right_idx) == -1:
k += 1
continue
spk_labels = speaker_list[left_idx:right_idx + 1]
mod_speaker = max(set(spk_labels), key=spk_labels.count)
if spk_labels.count(mod_speaker) < len(spk_labels) // 2:
k += 1
continue
speaker_list[left_idx:right_idx + 1] = [mod_speaker] * (
right_idx - left_idx + 1
)
k = right_idx
k += 1
for idx in range(len(self.word_speaker_mapping)):
self.word_speaker_mapping[idx]["speaker"] = speaker_list[idx]
@staticmethod
def _get_first_word_idx_of_sentence(
word_idx: int, word_list: List[str], speaker_list: List[str], max_words: int
) -> int:
"""
Finds the first word index of a sentence for realignment.
Parameters
----------
word_idx : int
Current word index.
word_list : List[str]
List of words in the sentence.
speaker_list : List[str]
List of speakers for the words.
max_words : int
Maximum words to consider in the sentence.
Returns
-------
int
The index of the first word of the sentence.
Examples
--------
>>> words_list = ["Hello", "world", ".", "How", "are", "you", "?"]
>>> speakers_list = ["Speaker 1", "Speaker 1", "Speaker 1", "Speaker 2", "Speaker 2", "Speaker 2", "Speaker 2"]
>>> WordSpeakerMapper._get_first_word_idx_of_sentence(4, word_list, speaker_list, 50)
3
"""
sentence_ending_punctuations = ".?!"
is_word_sentence_end = (
lambda x: x >= 0 and word_list[x][-1] in sentence_ending_punctuations
)
left_idx = word_idx
while (
left_idx > 0
and word_idx - left_idx < max_words
and speaker_list[left_idx - 1] == speaker_list[left_idx]
and not is_word_sentence_end(left_idx - 1)
):
left_idx -= 1
return left_idx if left_idx == 0 or is_word_sentence_end(left_idx - 1) else -1
@staticmethod
def _get_last_word_idx_of_sentence(
word_idx: int, word_list: List[str], max_words: int
) -> int:
"""
Finds the last word index of a sentence for realignment.
Parameters
----------
word_idx : int
Current word index.
word_list : List[str]
List of words in the sentence.
max_words : int
Maximum words to consider in the sentence.
Returns
-------
int
The index of the last word of the sentence.
Examples
--------
>>> words_list = ["Hello", "world", ".", "How", "are", "you", "?"]
>>> WordSpeakerMapper._get_last_word_idx_of_sentence(3, word_list, 50)
6
"""
sentence_ending_punctuations = ".?!"
is_word_sentence_end = (
lambda x: x >= 0 and word_list[x][-1] in sentence_ending_punctuations
)
right_idx = word_idx
while (
right_idx < len(word_list) - 1
and right_idx - word_idx < max_words
and not is_word_sentence_end(right_idx)
):
right_idx += 1
return (
right_idx
if right_idx == len(word_list) - 1 or is_word_sentence_end(right_idx)
else -1
)
class SentenceSpeakerMapper:
"""
Groups words into sentences and assigns each sentence to a speaker.
This class uses word-speaker mapping to group words into sentences based on punctuation
and speaker changes. It uses the NLTK library to detect sentence boundaries.
Attributes
----------
sentence_checker : Callable
Function to check for sentence breaks.
sentence_ending_punctuations : str
String of punctuation characters that indicate sentence endings.
Methods
-------
get_sentences_speaker_mapping(word_speaker_mapping)
Groups words into sentences and assigns each sentence to a speaker.
"""
def __init__(self):
"""
Initializes the SentenceSpeakerMapper and downloads required NLTK resources.
"""
nltk.download('punkt', quiet=True)
self.sentence_checker = nltk.tokenize.PunktSentenceTokenizer().text_contains_sentbreak
self.sentence_ending_punctuations = ".?!"
def get_sentences_speaker_mapping(
self,
word_speaker_mapping: Annotated[List[Dict], "List of words with speaker labels"]
) -> Annotated[List[Dict], "List of sentences with speaker labels and timing information"]:
"""
Groups words into sentences and assigns each sentence to a speaker.
Parameters
----------
word_speaker_mapping : List[Dict]
List of words with speaker labels.
Returns
-------
List[Dict]
List of sentences with speaker labels and timing information.
Examples
--------
>>> sentence_mapper = SentenceSpeakerMapper()
>>> word_speaker_map = [
... {'text': 'Hello', 'start_time': 0, 'end_time': 500, 'speaker': 1},
... {'text': 'world.', 'start_time': 600, 'end_time': 1000, 'speaker': 1},
... {'text': 'How', 'start_time': 1100, 'end_time': 1300, 'speaker': 2},
... {'text': 'are', 'start_time': 1400, 'end_time': 1500, 'speaker': 2},
... {'text': 'you?', 'start_time': 1600, 'end_time': 2000, 'speaker': 2},
... ]
>>> sentence_mapper.get_sentences_speaker_mapping(word_speaker_mapping)
[{'speaker': 'Speaker 1', 'start_time': 0, 'end_time': 1000, 'text': 'Hello world. '},
{'speaker': 'Speaker 2', 'start_time': 1100, 'end_time': 2000, 'text': 'How are you?'}]
"""
snts = []
prev_spk = word_speaker_mapping[0]['speaker']
snt = {
"speaker": f"Speaker {prev_spk}",
"start_time": word_speaker_mapping[0]['start_time'],
"end_time": word_speaker_mapping[0]['end_time'],
"text": word_speaker_mapping[0]['text'] + " ",
}
for word_dict in word_speaker_mapping[1:]:
word, spk = word_dict["text"], word_dict["speaker"]
s, e = word_dict["start_time"], word_dict["end_time"]
if spk != prev_spk or self.sentence_checker(snt["text"] + word):
snts.append(snt)
snt = {
"speaker": f"Speaker {spk}",
"start_time": s,
"end_time": e,
"text": word + " ",
}
else:
snt["end_time"] = e
snt["text"] += word + " "
prev_spk = spk
snts.append(snt)
return snts
class Audio:
"""
A class to handle audio file analysis and property extraction.
This class provides methods to load an audio file, process it, and
extract various audio properties including spectral, temporal, and
perceptual features.
Parameters
----------
audio_path : str
Path to the audio file to be analyzed.
Attributes
----------
audio_path : str
Path to the audio file.
extension : str
File extension of the audio file.
samples : int
Total number of audio samples.
duration : float
Duration of the audio in seconds.
data : np.ndarray
Audio data loaded from the file.
rate : int
Sampling rate of the audio file.
"""
def __init__(self, audio_path: str):
"""
Initialize the Audio class with a given audio file path.
Parameters
----------
audio_path : str
Path to the audio file.
Raises
------
TypeError
If `audio_path` is not a non-empty string.
FileNotFoundError
If the file specified by `audio_path` does not exist.
ValueError
If the file has an unsupported extension or is empty.
RuntimeError
If there is an error reading the audio file.
"""
if not isinstance(audio_path, str) or not audio_path:
raise TypeError("audio_path must be a non-empty string")
if not os.path.isfile(audio_path):
raise FileNotFoundError(f"The specified audio file does not exist: {audio_path}")
valid_extensions = [".wav", ".flac", ".mp3", ".ogg", ".m4a", ".aac"]
extension = os.path.splitext(audio_path)[1].lower()
if extension not in valid_extensions:
raise ValueError(f"File extension {extension} is not recognized as a supported audio format.")
try:
self.data, self.rate = sf.read(audio_path, dtype='float32')
except RuntimeError as e:
raise RuntimeError(f"Error reading audio file: {audio_path}") from e
if len(self.data) == 0:
raise ValueError(f"Audio file is empty: {audio_path}")
# Convert stereo or multichannel audio to mono
if len(self.data.shape) > 1 and self.data.shape[1] > 1:
self.data = np.mean(self.data, axis=1)
self.audio_path = audio_path
self.extension = extension
self.samples = len(self.data)
self.duration = self.samples / self.rate
def properties(self) -> Tuple[
str, str, str, int, float, float, Union[int, None], int, float, float, Dict[str, float]]:
"""
Extract various properties and features from the audio file.
Returns
-------
Tuple[str, str, str, int, float, float, Union[int, None], int, float, float, Dict[str, float]]
A tuple containing:
- File name (str)
- File extension (str)
- File path (str)
- Sample rate (int)
- Minimum frequency (float)
- Maximum frequency (float)
- Bit depth (Union[int, None])
- Number of channels (int)
- Duration (float)
- Root mean square loudness (float)
- A dictionary of extracted properties (Dict[str, float])
Notes
-----
Properties extracted include:
- Spectral bands energy
- Zero Crossing Rate (ZCR)
- Spectral Centroid
- MFCCs (Mel Frequency Cepstral Coefficients)
Examples
--------
>>> audio = Audio("sample.wav")
>>> audio.properties()
('sample.wav', '.wav', '/path/to/sample.wav', 44100, 20.0, 20000.0, 16, 2, 5.2, 0.25, {...})
"""
bands = [(20, 250), (250, 2000), (2000, 6000), (6000, 20000)]
x = fft(self.data)
xf = fftfreq(self.samples, 1 / self.rate)
nonzero_indices = np.where(xf != 0)[0]
min_freq = np.min(np.abs(xf[nonzero_indices]))
max_freq = np.max(np.abs(xf))
bit_depth = None
if self.extension == ".wav":
with wave.open(self.audio_path, 'r') as wav_file:
bit_depth = wav_file.getsampwidth() * 8
channels = wav_file.getnchannels()
else:
info = sf.info(self.audio_path)
channels = info.channels
duration = float(self.duration)
loudness = np.sqrt(np.mean(self.data ** 2))
s = np.abs(x)
freqs = xf
eq_properties = {}
for band in bands:
band_mask = (freqs >= band[0]) & (freqs <= band[1])
band_data = s[band_mask]
band_energy = np.mean(band_data ** 2, axis=0) if band_data.size > 0 else 0
eq_properties[f"EQ_{band[0]}_{band[1]}_Hz"] = band_energy
zcr = np.sum(np.abs(np.diff(np.sign(self.data)))) / len(self.data)
magnitude_spectrum = np.abs(np.fft.rfft(self.data))
freqs_centroid = np.fft.rfftfreq(len(self.data), 1.0 / self.rate)
spectral_centroid = (np.sum(freqs_centroid * magnitude_spectrum) /
np.sum(magnitude_spectrum)) if np.sum(magnitude_spectrum) != 0 else 0.0
mfccs = mfcc(y=self.data, sr=self.rate, n_mfcc=13)
mfcc_mean = np.mean(mfccs, axis=1)
eq_properties["RMSLoudness"] = float(loudness)
eq_properties["ZeroCrossingRate"] = float(zcr)
eq_properties["SpectralCentroid"] = float(spectral_centroid)
for i, val in enumerate(mfcc_mean):
eq_properties[f"MFCC_{i + 1}"] = float(val)
eq_properties_converted = {key: float(value) for key, value in eq_properties.items()}
file_name = os.path.basename(self.audio_path)
path = os.path.abspath(self.audio_path)
bit_depth = int(bit_depth) if bit_depth is not None else None
channels = int(channels) if channels is not None else 1
return (
file_name,
self.extension,
path,
int(self.rate),
float(min_freq),
float(max_freq),
bit_depth,
channels,
float(duration),
float(loudness),
eq_properties_converted
)
if __name__ == "__main__":
words_timestamp = [
{'text': 'Hello', 'start': 0.0, 'end': 1.2},
{'text': 'world', 'start': 1.3, 'end': 2.0}
]
speaker_timestamp = [
[0.0, 1.5, 1],
[1.6, 3.0, 2]
]
word_sentence_mapper = WordSpeakerMapper(words_timestamp, speaker_timestamp)
word_speaker_maps = word_sentence_mapper.get_words_speaker_mapping()
print("Word-Speaker Mapping:")
print(word_speaker_maps)
|