Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,16 +3,42 @@ from torchvision import transforms
|
|
3 |
from PIL import Image
|
4 |
import streamlit as st
|
5 |
import json
|
|
|
|
|
6 |
|
7 |
|
8 |
# Charger les noms des classes
|
9 |
with open("class_names.json", "r") as f:
|
10 |
class_names = json.load(f)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
# Charger le modèle
|
13 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
-
model = torch.load("efficientnet_b7_best.pth", map_location=device)
|
15 |
-
model.eval() # Mode évaluation
|
16 |
|
17 |
# Définir la taille de l'image
|
18 |
image_size = (224, 224)
|
|
|
3 |
from PIL import Image
|
4 |
import streamlit as st
|
5 |
import json
|
6 |
+
from torchvision.models import efficientnet_b7, EfficientNet_B7_Weights
|
7 |
+
|
8 |
|
9 |
|
10 |
# Charger les noms des classes
|
11 |
with open("class_names.json", "r") as f:
|
12 |
class_names = json.load(f)
|
13 |
+
|
14 |
+
# Charger le modèle avec des poids pré-entraînés
|
15 |
+
weights = EfficientNet_B7_Weights.DEFAULT
|
16 |
+
base_model = efficientnet_b7(weights=weights)
|
17 |
+
|
18 |
+
# Adapter le modèle pour la classification
|
19 |
+
class CustomEfficientNet(nn.Module):
|
20 |
+
def __init__(self, base_model, num_classes):
|
21 |
+
super(CustomEfficientNet, self).__init__()
|
22 |
+
self.base = nn.Sequential(*list(base_model.children())[:-2])
|
23 |
+
self.global_avg_pool = nn.AdaptiveAvgPool2d(1)
|
24 |
+
self.fc1 = nn.Linear(2560, 512)
|
25 |
+
self.relu = nn.ReLU()
|
26 |
+
self.fc2 = nn.Linear(512, num_classes)
|
27 |
+
|
28 |
+
def forward(self, x):
|
29 |
+
x = self.base(x)
|
30 |
+
x = self.global_avg_pool(x)
|
31 |
+
x = x.view(x.size(0), -1)
|
32 |
+
x = self.relu(self.fc1(x))
|
33 |
+
x = self.fc2(x)
|
34 |
+
return x
|
35 |
+
|
36 |
+
# Définir le modèle final
|
37 |
+
num_classes = 2
|
38 |
+
model = CustomEfficientNet(base_model, num_classes).to("cuda" if torch.cuda.is_available() else "cpu")
|
39 |
+
model.load_state_dict(torch.load("efficientnet_b7_best.pth",weights_only=False))
|
40 |
+
model.eval() # Passer le modèle en mode évaluation
|
41 |
|
|
|
|
|
|
|
|
|
42 |
|
43 |
# Définir la taille de l'image
|
44 |
image_size = (224, 224)
|