Spaces:
Sleeping
Sleeping
import torch | |
from torchvision import transforms | |
from PIL import Image | |
import streamlit as st | |
import json | |
from torchvision.models import efficientnet_b7, EfficientNet_B7_Weights | |
import torch.nn as nn | |
# Charger les noms des classes | |
with open("class_names.json", "r") as f: | |
class_names = json.load(f) | |
# Charger le modèle avec des poids pré-entraînés | |
weights = EfficientNet_B7_Weights.DEFAULT | |
base_model = efficientnet_b7(weights=weights) | |
# Adapter le modèle pour la classification | |
class CustomEfficientNet(nn.Module): | |
def __init__(self, base_model, num_classes): | |
super(CustomEfficientNet, self).__init__() | |
self.base = nn.Sequential(*list(base_model.children())[:-2]) | |
self.global_avg_pool = nn.AdaptiveAvgPool2d(1) | |
self.fc1 = nn.Linear(2560, 512) | |
self.relu = nn.ReLU() | |
self.fc2 = nn.Linear(512, num_classes) | |
def forward(self, x): | |
x = self.base(x) | |
x = self.global_avg_pool(x) | |
x = x.view(x.size(0), -1) | |
x = self.relu(self.fc1(x)) | |
x = self.fc2(x) | |
return x | |
# Définir le modèle final | |
num_classes = 2 | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = CustomEfficientNet(base_model, num_classes).to("cuda" if torch.cuda.is_available() else "cpu") | |
model.load_state_dict(torch.load("efficientnet_b7_best.pth",weights_only=False, map_location=device)) | |
model.eval() # Passer le modèle en mode évaluation | |
# Définir la taille de l'image | |
image_size = (224, 224) | |
# Transformation pour l'image | |
class GrayscaleToRGB: | |
def __call__(self, img): | |
return img.convert("RGB") | |
valid_test_transforms = transforms.Compose([ | |
transforms.Grayscale(num_output_channels=1), | |
transforms.Resize(image_size), | |
GrayscaleToRGB(), # Conversion en RGB | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) | |
]) | |
# Fonction de prédiction | |
def predict_image(image): | |
image_tensor = valid_test_transforms(image).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
outputs = model(image_tensor) | |
_, predicted_class = torch.max(outputs, 1) | |
predicted_label = class_names[predicted_class.item()] | |
return predicted_label | |
# Interface Streamlit | |
st.title("Prédiction d'images avec PyTorch") | |
st.write("Chargez une image pour obtenir une prédiction de classe.") | |
uploaded_image = st.file_uploader("Téléchargez une image", type=["jpg", "jpeg", "png"]) | |
if uploaded_image is not None: | |
image = Image.open(uploaded_image) | |
st.image(image, caption="Image téléchargée", use_column_width=True) | |
predicted_label = predict_image(image) | |
st.write(f"Prédiction de la classe : {predicted_label}") | |