Spaces:
Running
Running
File size: 10,104 Bytes
7786bd6 e925821 7786bd6 e925821 7786bd6 e925821 7786bd6 e925821 7786bd6 e925821 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
# PyTorch for deep learning operations
import torch
import torch.nn as nn
# PyTorch data loading and utilities
import torch.multiprocessing
import torchaudio
from transformers import AutoProcessor, Wav2Vec2Model
import torchaudio.transforms as transforms
from huggingface_hub import PyTorchModelHubMixin
from configs import CFG
from text_image import OneEncoder as TextImageEncoder
import torch.nn.functional as F
import matplotlib.pyplot as plt
import numpy as np
from IPython.display import Audio
class AlignmentLayer(nn.Module):
def __init__(self, input_dim=768, projection_dim=CFG.projection_dim, dropout_rate=CFG.dropout_rate, *args, **kwargs):
super(AlignmentLayer, self).__init__(*args, **kwargs)
# Attributes
self.input_dim = input_dim
self.projection_dim = projection_dim
self.dropout_rate = dropout_rate
# Layers
self.linear_layer1 = nn.Linear(self.input_dim, self.projection_dim)
self.gelu = nn.GELU()
self.linear_layer2 = nn.Linear(self.projection_dim, self.projection_dim)
self.dropout = nn.Dropout(self.dropout_rate)
self.normalization_layer = nn.LayerNorm(self.projection_dim)
def forward(self, inputs):
x = inputs
x = self.linear_layer1(x)
x = self.gelu(x)
x = self.linear_layer2(x)
x = self.dropout(x)
x = self.normalization_layer(x)
return x
def __call__(self, inputs):
return self.forward(inputs)
class AudioEncoder(nn.Module):
def __init__(self, model_name=CFG.audio_name, projection_dim=CFG.projection_dim,
trainable=False, dropout_rate=CFG.dropout_rate, *args, **kwargs):
super(AudioEncoder, self).__init__(*args, **kwargs)
# Attributes
self.model_name = model_name
self.projection_dim = projection_dim
self.dropout_rate = dropout_rate
self.trainable = trainable
# Models
self.pretrained_encoder = Wav2Vec2Model.from_pretrained(self.model_name)
self.alignment_layer = AlignmentLayer(
input_dim=self.pretrained_encoder.config.hidden_size,
projection_dim=self.projection_dim,
dropout_rate=self.dropout_rate)
# Freeze Wav2VecModel
for parameter in self.pretrained_encoder.parameters():
parameter.requires_grad = self.trainable
# Unfreeze not initialized layers
newly_initialized_layers = [
'encoder.pos_conv_embed.conv.parametrizations.weight.original0',
'encoder.pos_conv_embed.conv.parametrizations.weight.original1',
'masked_spec_embed'
]
for name, param in self.pretrained_encoder.named_parameters():
if any(layer_name in name for layer_name in newly_initialized_layers):
param.requires_grad = True
def forward(self, inputs):
x = self.pretrained_encoder(inputs['input_values'].float()).last_hidden_state
x = self.alignment_layer(x)
return x
def __call__(self, inputs):
return self.forward(inputs)
class ModalityTokenEncoder(nn.Module):
def __init__(self, projection_dim=CFG.projection_dim, token_size=CFG.token_size, device='cpu', token_dim=CFG.token_dim, *args, **kwargs):
super(ModalityTokenEncoder, self).__init__(*args, **kwargs)
# Attributes
self.projection_dim = projection_dim
self.device = device
self.token_size = token_size
self.token_dim = token_dim
# Models
audio_variance = torch.rand(1) * 0.5 + 0.1
self.audio_token = nn.Parameter(torch.normal(mean=0, std=audio_variance.item(),
size=(self.token_size, self.token_dim)).to(self.device))
self.token_projection = nn.Sequential(
nn.Linear(self.token_dim, 64),
nn.ReLU(),
nn.Linear(64, 128),
nn.ReLU(),
nn.Linear(128, self.projection_dim),
nn.LayerNorm(self.projection_dim)
)
def forward(self):
return self.token_projection(self.audio_token)
def __call__(self):
return self.forward()
class OneEncoder(nn.Module, PyTorchModelHubMixin):
def __init__(self, device='cpu', modality_token_encoder=ModalityTokenEncoder(), checkpoint="bilalfaye/OneEncoder-text-image",
audio_processor=AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h"),
sample_rate=CFG.sample_rate, audio_encoder=AudioEncoder(), *args, **kwargs):
super(OneEncoder, self).__init__(*args, **kwargs)
self.device = device
self.checkpoint = checkpoint
self.modality_token_encoder = modality_token_encoder
self.modality_token_encoder.device = self.device
self.text_image_encoder = TextImageEncoder(device=self.device)
self.text_image_encoder.from_pretrained(self.checkpoint)
self.audio_processor = audio_processor
self.sample_rate = sample_rate
self.audio_encoder = audio_encoder
self.temperature = nn.Parameter(torch.tensor(0.07).to(self.device))
# Freeze
for parameter in self.text_image_encoder.parameters():
parameter.requires_grad = False
def load_audio(self, audio_path):
waveform, original_sample_rate = torchaudio.load(audio_path)
# If the audio needs to be resampled
if original_sample_rate != self.sample_rate:
resampler = transforms.Resample(orig_freq=original_sample_rate, new_freq=self.sample_rate)
waveform = resampler(waveform)
# mono sound -> output shape: torch.Size(1, dim)
# Stereo sound -> output shape: torch.Size(2, dim)
# Surround sound -> output shape: torch.Size(n, dim)
return waveform
def process_audio(self, audios):
# audios: list of numpy array
x = self.audio_processor(audios, sampling_rate=self.sample_rate, return_tensors="pt", padding=True, max_length=15*self.sample_rate, truncation=True)
#x = self.audio_processor(audios, sampling_rate=self.sample_rate, return_tensors="pt", padding=True)
return x
def encode_audio(self, audios):
# audios: torch 2D (batch, dim)
audio_embeddings = self.audio_encoder(audios.to(self.device))
modality_token = self.modality_token_encoder()
audio_features = self.text_image_encoder.universal_projection_encoder([audio_embeddings, modality_token]).last_hidden_state
return audio_features.float()
def matching_image_audio(self, audios, image_paths=None, image_tensors=None,
normalize=True, top_k=None, strategy="similarity", temperature=0.0):
# audios is of shape {"input_values":torch.Size([N, dim])}
wav_features = torch.mean(self.encode_audio(audios), dim=1)
image_features = self.text_image_encoder.encode_image(image_paths=image_paths, image_tensors=image_tensors)
if normalize:
image_features = F.normalize(image_features, p=2, dim=-1)
wav_features = F.normalize(wav_features, p=2, dim=-1)
dot_similarities = (image_features @ wav_features.T) * torch.exp(torch.tensor(temperature).to(self.device))
if strategy == 'softmax':
dot_similarities = (float(audios["input_values"].shape[0]) * dot_similarities).softmax(dim=-1)
if top_k is not None:
top_probs, top_labels = dot_similarities.cpu().topk(top_k, dim=-1)
return top_probs, top_labels
else:
return dot_similarities, None
def matching_text_audio(self, audios, texts, normalize=True, top_k=None, strategy="similarity", temperature=0.0):
# audios is of shape {"input_values":torch.Size([N, dim])}
wav_features = torch.mean(self.encode_audio(audios), dim=1)
text_features = self.text_image_encoder.encode_text(texts=texts)
if normalize:
text_features = F.normalize(text_features, p=2, dim=-1)
wav_features = F.normalize(wav_features, p=2, dim=-1)
dot_similarities = (text_features @ wav_features.T) * torch.exp(torch.tensor(temperature).to(self.device))
if strategy == 'softmax':
dot_similarities = (float(audios["input_values"].shape[0]) * dot_similarities).softmax(dim=-1)
if top_k is not None:
top_probs, top_labels = dot_similarities.cpu().topk(top_k, dim=-1)
return top_probs, top_labels
else:
return dot_similarities, None
def image_retrieval(self, query, image_paths, image_embeddings=None, temperature=0.0, n=9, plot=False, display_audio=False):
# query is of shape {"input_values":torch.Size([1, dim])}
wav_embeddings = torch.mean(self.encode_audio(audios=query), dim=1)
if image_embeddings is None:
image_embeddings = self.text_image_encoder.encode_image(image_paths=image_paths)
image_embeddings_n = F.normalize(image_embeddings, p=2, dim=-1)
wav_embeddings_n = F.normalize(wav_embeddings, p=2, dim=-1)
dot_similarity = (wav_embeddings_n @ image_embeddings_n.T) * torch.exp(
torch.tensor(temperature).to(self.device))
if n > len(image_paths):
n = len(image_paths)
values, indices = torch.topk(dot_similarity.cpu().squeeze(0), n)
if plot:
nrows = int(np.sqrt(n))
ncols = int(np.ceil(n / nrows))
matches = [image_paths[idx] for idx in indices]
fig, axes = plt.subplots(nrows, ncols, figsize=(20, 20))
for match, ax in zip(matches, axes.flatten()):
image = self.text_image_encoder.load_image(f"{match}")
ax.imshow(image)
ax.axis("off")
plt.savefig("img.png")
#if display_audio:
# fig.suptitle(display(Audio(query['input_values'], rate=self.sample_rate)))
#plt.show()
#return values, indices
|