File size: 10,104 Bytes
7786bd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e925821
7786bd6
 
 
 
 
e925821
7786bd6
 
 
e925821
 
 
 
 
 
 
 
 
 
 
7786bd6
e925821
7786bd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e925821
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# PyTorch for deep learning operations
import torch
import torch.nn as nn


# PyTorch data loading and utilities
import torch.multiprocessing

import torchaudio
from transformers import AutoProcessor, Wav2Vec2Model
import torchaudio.transforms as transforms
from huggingface_hub import PyTorchModelHubMixin
from configs import CFG
from text_image import OneEncoder as TextImageEncoder
import torch.nn.functional as F
import matplotlib.pyplot as plt
import numpy as np
from IPython.display import Audio

class AlignmentLayer(nn.Module):
    def __init__(self, input_dim=768, projection_dim=CFG.projection_dim, dropout_rate=CFG.dropout_rate, *args, **kwargs):

        super(AlignmentLayer, self).__init__(*args, **kwargs)
        # Attributes
        self.input_dim = input_dim
        self.projection_dim = projection_dim
        self.dropout_rate = dropout_rate
        # Layers
        self.linear_layer1 = nn.Linear(self.input_dim, self.projection_dim)
        self.gelu = nn.GELU()
        self.linear_layer2 = nn.Linear(self.projection_dim, self.projection_dim)
        self.dropout = nn.Dropout(self.dropout_rate)
        self.normalization_layer = nn.LayerNorm(self.projection_dim)

    def forward(self, inputs):
        x = inputs
        x = self.linear_layer1(x)
        x = self.gelu(x)
        x = self.linear_layer2(x)
        x = self.dropout(x)
        x = self.normalization_layer(x)
        return x

    def __call__(self, inputs):
        return self.forward(inputs)

class AudioEncoder(nn.Module):
    def __init__(self, model_name=CFG.audio_name, projection_dim=CFG.projection_dim,
                 trainable=False, dropout_rate=CFG.dropout_rate, *args, **kwargs):

        super(AudioEncoder, self).__init__(*args, **kwargs)
        # Attributes
        self.model_name = model_name
        self.projection_dim = projection_dim
        self.dropout_rate = dropout_rate
        self.trainable = trainable
        # Models
        self.pretrained_encoder = Wav2Vec2Model.from_pretrained(self.model_name)
        self.alignment_layer = AlignmentLayer(
                                              input_dim=self.pretrained_encoder.config.hidden_size,
                                              projection_dim=self.projection_dim,
                                              dropout_rate=self.dropout_rate)
        # Freeze Wav2VecModel
        for parameter in self.pretrained_encoder.parameters():
            parameter.requires_grad = self.trainable
        # Unfreeze not initialized layers
        newly_initialized_layers = [
            'encoder.pos_conv_embed.conv.parametrizations.weight.original0',
            'encoder.pos_conv_embed.conv.parametrizations.weight.original1',
            'masked_spec_embed'
        ]
        for name, param in self.pretrained_encoder.named_parameters():
            if any(layer_name in name for layer_name in newly_initialized_layers):
                param.requires_grad = True

    def forward(self, inputs):

        x = self.pretrained_encoder(inputs['input_values'].float()).last_hidden_state
        x = self.alignment_layer(x)
        return x

    def __call__(self, inputs):
        return self.forward(inputs)

class ModalityTokenEncoder(nn.Module):
    def __init__(self, projection_dim=CFG.projection_dim, token_size=CFG.token_size, device='cpu', token_dim=CFG.token_dim, *args, **kwargs):
        super(ModalityTokenEncoder, self).__init__(*args, **kwargs)
        # Attributes
        self.projection_dim = projection_dim
        self.device = device
        self.token_size = token_size
        self.token_dim = token_dim
        # Models
        audio_variance = torch.rand(1) * 0.5 + 0.1
        self.audio_token = nn.Parameter(torch.normal(mean=0, std=audio_variance.item(),
                                                      size=(self.token_size, self.token_dim)).to(self.device))

        self.token_projection = nn.Sequential(
            nn.Linear(self.token_dim, 64),
            nn.ReLU(),
            nn.Linear(64, 128),
            nn.ReLU(),
            nn.Linear(128, self.projection_dim),
            nn.LayerNorm(self.projection_dim)
        )

    def forward(self):
        return self.token_projection(self.audio_token)

    def __call__(self):
        return self.forward()

class OneEncoder(nn.Module, PyTorchModelHubMixin):
    def __init__(self, device='cpu', modality_token_encoder=ModalityTokenEncoder(), checkpoint="bilalfaye/OneEncoder-text-image",
                 audio_processor=AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h"),
                 sample_rate=CFG.sample_rate, audio_encoder=AudioEncoder(), *args, **kwargs):
        super(OneEncoder, self).__init__(*args, **kwargs)

        self.device = device
        self.checkpoint = checkpoint
        self.modality_token_encoder = modality_token_encoder
        self.modality_token_encoder.device = self.device
        self.text_image_encoder = TextImageEncoder(device=self.device)
        self.text_image_encoder.from_pretrained(self.checkpoint)
        self.audio_processor = audio_processor
        self.sample_rate = sample_rate
        self.audio_encoder = audio_encoder
        self.temperature = nn.Parameter(torch.tensor(0.07).to(self.device))

        # Freeze
        for parameter in self.text_image_encoder.parameters():
            parameter.requires_grad = False

    def load_audio(self, audio_path):
        waveform, original_sample_rate = torchaudio.load(audio_path)
        # If the audio needs to be resampled
        if original_sample_rate != self.sample_rate:
            resampler = transforms.Resample(orig_freq=original_sample_rate, new_freq=self.sample_rate)
            waveform = resampler(waveform)

        # mono sound -> output shape: torch.Size(1, dim)
        # Stereo sound -> output shape: torch.Size(2, dim)
        # Surround sound -> output shape: torch.Size(n, dim)
        return waveform

    def process_audio(self, audios):
        # audios: list of numpy array
        x = self.audio_processor(audios, sampling_rate=self.sample_rate, return_tensors="pt", padding=True, max_length=15*self.sample_rate, truncation=True)
        #x = self.audio_processor(audios, sampling_rate=self.sample_rate, return_tensors="pt", padding=True)
        return x

    def encode_audio(self, audios):
        # audios: torch 2D (batch, dim)
        audio_embeddings = self.audio_encoder(audios.to(self.device))
        modality_token = self.modality_token_encoder()
        audio_features = self.text_image_encoder.universal_projection_encoder([audio_embeddings, modality_token]).last_hidden_state
        return audio_features.float()

    def matching_image_audio(self, audios, image_paths=None, image_tensors=None,
                              normalize=True, top_k=None, strategy="similarity", temperature=0.0):
        # audios is of shape {"input_values":torch.Size([N, dim])}
        wav_features = torch.mean(self.encode_audio(audios), dim=1)
        image_features = self.text_image_encoder.encode_image(image_paths=image_paths, image_tensors=image_tensors)
        if normalize:
            image_features = F.normalize(image_features, p=2, dim=-1)
            wav_features = F.normalize(wav_features, p=2, dim=-1)
        dot_similarities = (image_features @ wav_features.T) * torch.exp(torch.tensor(temperature).to(self.device))
        if strategy == 'softmax':
            dot_similarities = (float(audios["input_values"].shape[0]) * dot_similarities).softmax(dim=-1)
        if top_k is not None:
            top_probs, top_labels = dot_similarities.cpu().topk(top_k, dim=-1)
            return top_probs, top_labels
        else:
            return dot_similarities, None

    def matching_text_audio(self, audios, texts, normalize=True, top_k=None, strategy="similarity", temperature=0.0):
        # audios is of shape {"input_values":torch.Size([N, dim])}
        wav_features = torch.mean(self.encode_audio(audios), dim=1)
        text_features = self.text_image_encoder.encode_text(texts=texts)
        if normalize:
            text_features = F.normalize(text_features, p=2, dim=-1)
            wav_features = F.normalize(wav_features, p=2, dim=-1)
        dot_similarities = (text_features @ wav_features.T) * torch.exp(torch.tensor(temperature).to(self.device))
        if strategy == 'softmax':
            dot_similarities = (float(audios["input_values"].shape[0]) * dot_similarities).softmax(dim=-1)
        if top_k is not None:
            top_probs, top_labels = dot_similarities.cpu().topk(top_k, dim=-1)
            return top_probs, top_labels
        else:
            return dot_similarities, None

    def image_retrieval(self, query, image_paths, image_embeddings=None, temperature=0.0, n=9, plot=False, display_audio=False):
        # query is of shape {"input_values":torch.Size([1, dim])}
        wav_embeddings = torch.mean(self.encode_audio(audios=query), dim=1)
        if image_embeddings is None:
            image_embeddings = self.text_image_encoder.encode_image(image_paths=image_paths)

        image_embeddings_n = F.normalize(image_embeddings, p=2, dim=-1)
        wav_embeddings_n = F.normalize(wav_embeddings, p=2, dim=-1)
        dot_similarity = (wav_embeddings_n @ image_embeddings_n.T) * torch.exp(
            torch.tensor(temperature).to(self.device))
        if n > len(image_paths):
            n = len(image_paths)
        values, indices = torch.topk(dot_similarity.cpu().squeeze(0), n)
        if plot:
            nrows = int(np.sqrt(n))
            ncols = int(np.ceil(n / nrows))
            matches = [image_paths[idx] for idx in indices]
            fig, axes = plt.subplots(nrows, ncols, figsize=(20, 20))
            for match, ax in zip(matches, axes.flatten()):
                image = self.text_image_encoder.load_image(f"{match}")
                ax.imshow(image)
                ax.axis("off")
            plt.savefig("img.png")
            #if display_audio:
            #    fig.suptitle(display(Audio(query['input_values'], rate=self.sample_rate)))
            #plt.show()
        #return values, indices