Update main.py
Browse files
main.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import os, io
|
2 |
from pathlib import Path
|
|
|
3 |
from fastapi import FastAPI, UploadFile, File, Form
|
4 |
from fastapi.middleware.cors import CORSMiddleware
|
5 |
from fastapi.responses import JSONResponse, HTMLResponse, FileResponse
|
@@ -14,20 +15,20 @@ from io import BytesIO
|
|
14 |
# CONFIGURATION
|
15 |
# -----------------------------------------------------------------------------
|
16 |
HUGGINGFACE_TOKEN = os.getenv("HF_TOKEN")
|
17 |
-
PORT
|
18 |
|
19 |
app = FastAPI(
|
20 |
-
title="AI
|
21 |
-
description="Backend for summarisation, captioning & QA",
|
22 |
-
version="1.2.
|
23 |
)
|
24 |
|
25 |
app.add_middleware(
|
26 |
CORSMiddleware,
|
27 |
-
allow_origins=["*"],
|
28 |
-
allow_credentials=True,
|
29 |
-
allow_methods=["*"],
|
30 |
-
allow_headers=["*"],
|
31 |
)
|
32 |
|
33 |
# -----------------------------------------------------------------------------
|
@@ -40,14 +41,31 @@ if static_dir.exists():
|
|
40 |
# -----------------------------------------------------------------------------
|
41 |
# HUGGING FACE INFERENCE CLIENTS
|
42 |
# -----------------------------------------------------------------------------
|
43 |
-
summary_client
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
# -----------------------------------------------------------------------------
|
48 |
# UTILITIES
|
49 |
# -----------------------------------------------------------------------------
|
50 |
-
|
51 |
def extract_text_from_pdf(content: bytes) -> str:
|
52 |
reader = PdfReader(io.BytesIO(content))
|
53 |
return "\n".join(page.extract_text() or "" for page in reader.pages).strip()
|
@@ -58,7 +76,7 @@ def extract_text_from_docx(content: bytes) -> str:
|
|
58 |
|
59 |
def process_uploaded_file(file: UploadFile) -> str:
|
60 |
content = file.file.read()
|
61 |
-
ext
|
62 |
if ext == "pdf":
|
63 |
return extract_text_from_pdf(content)
|
64 |
if ext == "docx":
|
@@ -70,7 +88,6 @@ def process_uploaded_file(file: UploadFile) -> str:
|
|
70 |
# -----------------------------------------------------------------------------
|
71 |
# ROUTES
|
72 |
# -----------------------------------------------------------------------------
|
73 |
-
|
74 |
@app.get("/", response_class=HTMLResponse)
|
75 |
async def serve_index():
|
76 |
return FileResponse("index.html")
|
@@ -90,51 +107,66 @@ async def summarize_document(file: UploadFile = File(...)):
|
|
90 |
)
|
91 |
return {"result": summary_txt}
|
92 |
except Exception as exc:
|
93 |
-
return JSONResponse(status_code=500,
|
|
|
|
|
94 |
|
95 |
-
# -------------------- Image Caption
|
96 |
@app.post("/api/caption")
|
97 |
async def caption_image(image: UploadFile = File(...)):
|
98 |
"""`image` field name matches frontend (was `file` before)."""
|
99 |
try:
|
100 |
img_bytes = await image.read()
|
101 |
-
img
|
102 |
img.thumbnail((1024, 1024))
|
103 |
buf = BytesIO(); img.save(buf, format="JPEG")
|
104 |
result = image_caption_client.image_to_text(buf.getvalue())
|
105 |
if isinstance(result, dict):
|
106 |
-
caption = result.get("generated_text")
|
|
|
|
|
107 |
elif isinstance(result, list):
|
108 |
caption = result[0].get("generated_text", "No caption found.")
|
109 |
else:
|
110 |
caption = str(result)
|
111 |
return {"result": caption}
|
112 |
except Exception as exc:
|
113 |
-
return JSONResponse(status_code=500,
|
|
|
|
|
114 |
|
115 |
-
# -------------------- Question Answering
|
116 |
@app.post("/api/qa")
|
117 |
-
async def question_answering(file: UploadFile = File(...),
|
|
|
118 |
try:
|
119 |
if file.content_type.startswith("image/"):
|
120 |
img_bytes = await file.read()
|
121 |
-
img
|
|
|
122 |
buf = BytesIO(); img.save(buf, format="JPEG")
|
123 |
-
res
|
124 |
-
context
|
|
|
125 |
else:
|
126 |
context = process_uploaded_file(file)[:3000]
|
|
|
127 |
if not context:
|
128 |
return {"result": "No context β cannot answer."}
|
|
|
129 |
answer = qa_client.question_answering(question=question, context=context)
|
130 |
return {"result": answer.get("answer", "No answer found.")}
|
131 |
except Exception as exc:
|
132 |
-
return JSONResponse(status_code=500,
|
|
|
|
|
133 |
|
134 |
-
# -------------------- Health
|
135 |
@app.get("/api/health")
|
136 |
async def health():
|
137 |
-
return {"status": "healthy",
|
|
|
|
|
138 |
|
139 |
# -----------------------------------------------------------------------------
|
140 |
# ENTRYPOINT
|
|
|
1 |
import os, io
|
2 |
from pathlib import Path
|
3 |
+
|
4 |
from fastapi import FastAPI, UploadFile, File, Form
|
5 |
from fastapi.middleware.cors import CORSMiddleware
|
6 |
from fastapi.responses import JSONResponse, HTMLResponse, FileResponse
|
|
|
15 |
# CONFIGURATION
|
16 |
# -----------------------------------------------------------------------------
|
17 |
HUGGINGFACE_TOKEN = os.getenv("HF_TOKEN")
|
18 |
+
PORT = int(os.getenv("PORT", 7860))
|
19 |
|
20 |
app = FastAPI(
|
21 |
+
title = "AI-Powered Web-App API",
|
22 |
+
description = "Backend for summarisation, captioning & QA",
|
23 |
+
version = "1.2.3", # <-- bumped
|
24 |
)
|
25 |
|
26 |
app.add_middleware(
|
27 |
CORSMiddleware,
|
28 |
+
allow_origins = ["*"],
|
29 |
+
allow_credentials = True,
|
30 |
+
allow_methods = ["*"],
|
31 |
+
allow_headers = ["*"],
|
32 |
)
|
33 |
|
34 |
# -----------------------------------------------------------------------------
|
|
|
41 |
# -----------------------------------------------------------------------------
|
42 |
# HUGGING FACE INFERENCE CLIENTS
|
43 |
# -----------------------------------------------------------------------------
|
44 |
+
summary_client = InferenceClient(
|
45 |
+
"facebook/bart-large-cnn",
|
46 |
+
token = HUGGINGFACE_TOKEN,
|
47 |
+
timeout = 120,
|
48 |
+
)
|
49 |
+
|
50 |
+
# β Upgraded QA model (higher accuracy than roberta-base)
|
51 |
+
qa_client = InferenceClient(
|
52 |
+
"deepset/roberta-large-squad2",
|
53 |
+
token = HUGGINGFACE_TOKEN,
|
54 |
+
timeout = 120,
|
55 |
+
)
|
56 |
+
# If you need multilingual support, swap for:
|
57 |
+
# qa_client = InferenceClient("deepset/xlm-roberta-large-squad2",
|
58 |
+
# token=HUGGINGFACE_TOKEN, timeout=120)
|
59 |
+
|
60 |
+
image_caption_client = InferenceClient(
|
61 |
+
"nlpconnect/vit-gpt2-image-captioning",
|
62 |
+
token = HUGGINGFACE_TOKEN,
|
63 |
+
timeout = 60,
|
64 |
+
)
|
65 |
|
66 |
# -----------------------------------------------------------------------------
|
67 |
# UTILITIES
|
68 |
# -----------------------------------------------------------------------------
|
|
|
69 |
def extract_text_from_pdf(content: bytes) -> str:
|
70 |
reader = PdfReader(io.BytesIO(content))
|
71 |
return "\n".join(page.extract_text() or "" for page in reader.pages).strip()
|
|
|
76 |
|
77 |
def process_uploaded_file(file: UploadFile) -> str:
|
78 |
content = file.file.read()
|
79 |
+
ext = file.filename.split(".")[-1].lower()
|
80 |
if ext == "pdf":
|
81 |
return extract_text_from_pdf(content)
|
82 |
if ext == "docx":
|
|
|
88 |
# -----------------------------------------------------------------------------
|
89 |
# ROUTES
|
90 |
# -----------------------------------------------------------------------------
|
|
|
91 |
@app.get("/", response_class=HTMLResponse)
|
92 |
async def serve_index():
|
93 |
return FileResponse("index.html")
|
|
|
107 |
)
|
108 |
return {"result": summary_txt}
|
109 |
except Exception as exc:
|
110 |
+
return JSONResponse(status_code=500,
|
111 |
+
content={"error": f"Summarisation failure: {exc}"})
|
112 |
+
|
113 |
|
114 |
+
# -------------------- Image Caption ------------------------------------------
|
115 |
@app.post("/api/caption")
|
116 |
async def caption_image(image: UploadFile = File(...)):
|
117 |
"""`image` field name matches frontend (was `file` before)."""
|
118 |
try:
|
119 |
img_bytes = await image.read()
|
120 |
+
img = Image.open(io.BytesIO(img_bytes)).convert("RGB")
|
121 |
img.thumbnail((1024, 1024))
|
122 |
buf = BytesIO(); img.save(buf, format="JPEG")
|
123 |
result = image_caption_client.image_to_text(buf.getvalue())
|
124 |
if isinstance(result, dict):
|
125 |
+
caption = (result.get("generated_text")
|
126 |
+
or result.get("caption")
|
127 |
+
or "No caption found.")
|
128 |
elif isinstance(result, list):
|
129 |
caption = result[0].get("generated_text", "No caption found.")
|
130 |
else:
|
131 |
caption = str(result)
|
132 |
return {"result": caption}
|
133 |
except Exception as exc:
|
134 |
+
return JSONResponse(status_code=500,
|
135 |
+
content={"error": f"Caption failure: {exc}"})
|
136 |
+
|
137 |
|
138 |
+
# -------------------- Question Answering -------------------------------------
|
139 |
@app.post("/api/qa")
|
140 |
+
async def question_answering(file: UploadFile = File(...),
|
141 |
+
question: str = Form(...)):
|
142 |
try:
|
143 |
if file.content_type.startswith("image/"):
|
144 |
img_bytes = await file.read()
|
145 |
+
img = Image.open(io.BytesIO(img_bytes)).convert("RGB")
|
146 |
+
img.thumbnail((1024, 1024))
|
147 |
buf = BytesIO(); img.save(buf, format="JPEG")
|
148 |
+
res = image_caption_client.image_to_text(buf.getvalue())
|
149 |
+
context = (res.get("generated_text") if isinstance(res, dict)
|
150 |
+
else str(res))
|
151 |
else:
|
152 |
context = process_uploaded_file(file)[:3000]
|
153 |
+
|
154 |
if not context:
|
155 |
return {"result": "No context β cannot answer."}
|
156 |
+
|
157 |
answer = qa_client.question_answering(question=question, context=context)
|
158 |
return {"result": answer.get("answer", "No answer found.")}
|
159 |
except Exception as exc:
|
160 |
+
return JSONResponse(status_code=500,
|
161 |
+
content={"error": f"QA failure: {exc}"})
|
162 |
+
|
163 |
|
164 |
+
# -------------------- Health --------------------------------------------------
|
165 |
@app.get("/api/health")
|
166 |
async def health():
|
167 |
+
return {"status": "healthy",
|
168 |
+
"hf_token_set": bool(HUGGINGFACE_TOKEN),
|
169 |
+
"version": app.version}
|
170 |
|
171 |
# -----------------------------------------------------------------------------
|
172 |
# ENTRYPOINT
|