|
import os, io |
|
from pathlib import Path |
|
|
|
from fastapi import FastAPI, UploadFile, File, Form |
|
from fastapi.middleware.cors import CORSMiddleware |
|
from fastapi.responses import JSONResponse, HTMLResponse, FileResponse |
|
from fastapi.staticfiles import StaticFiles |
|
from huggingface_hub import InferenceClient |
|
from PyPDF2 import PdfReader |
|
from docx import Document |
|
from PIL import Image |
|
from io import BytesIO |
|
|
|
|
|
|
|
|
|
HUGGINGFACE_TOKEN = os.getenv("HF_TOKEN") |
|
PORT = int(os.getenv("PORT", 7860)) |
|
|
|
app = FastAPI( |
|
title = "AI-Powered Web-App API", |
|
description = "Backend for summarisation, captioning & QA", |
|
version = "1.2.3", |
|
) |
|
|
|
app.add_middleware( |
|
CORSMiddleware, |
|
allow_origins = ["*"], |
|
allow_credentials = True, |
|
allow_methods = ["*"], |
|
allow_headers = ["*"], |
|
) |
|
|
|
|
|
|
|
|
|
static_dir = Path("static") |
|
if static_dir.exists(): |
|
app.mount("/static", StaticFiles(directory=str(static_dir)), name="static") |
|
|
|
|
|
|
|
|
|
summary_client = InferenceClient( |
|
"facebook/bart-large-cnn", |
|
token = HUGGINGFACE_TOKEN, |
|
timeout = 120, |
|
) |
|
|
|
|
|
qa_client = InferenceClient( |
|
"deepset/roberta-large-squad2", |
|
token = HUGGINGFACE_TOKEN, |
|
timeout = 120, |
|
) |
|
|
|
|
|
|
|
|
|
image_caption_client = InferenceClient( |
|
"nlpconnect/vit-gpt2-image-captioning", |
|
token = HUGGINGFACE_TOKEN, |
|
timeout = 60, |
|
) |
|
|
|
|
|
|
|
|
|
def extract_text_from_pdf(content: bytes) -> str: |
|
reader = PdfReader(io.BytesIO(content)) |
|
return "\n".join(page.extract_text() or "" for page in reader.pages).strip() |
|
|
|
def extract_text_from_docx(content: bytes) -> str: |
|
doc = Document(io.BytesIO(content)) |
|
return "\n".join(p.text for p in doc.paragraphs).strip() |
|
|
|
def process_uploaded_file(file: UploadFile) -> str: |
|
content = file.file.read() |
|
ext = file.filename.split(".")[-1].lower() |
|
if ext == "pdf": |
|
return extract_text_from_pdf(content) |
|
if ext == "docx": |
|
return extract_text_from_docx(content) |
|
if ext == "txt": |
|
return content.decode("utf-8").strip() |
|
raise ValueError("Unsupported file type") |
|
|
|
|
|
|
|
|
|
@app.get("/", response_class=HTMLResponse) |
|
async def serve_index(): |
|
return FileResponse("index.html") |
|
|
|
|
|
@app.post("/api/summarize") |
|
async def summarize_document(file: UploadFile = File(...)): |
|
try: |
|
text = process_uploaded_file(file) |
|
if len(text) < 20: |
|
return {"result": "Document too short to summarise."} |
|
summary_raw = summary_client.summarization(text[:3000]) |
|
summary_txt = ( |
|
summary_raw[0].get("summary_text") if isinstance(summary_raw, list) else |
|
summary_raw.get("summary_text") if isinstance(summary_raw, dict) else |
|
str(summary_raw) |
|
) |
|
return {"result": summary_txt} |
|
except Exception as exc: |
|
return JSONResponse(status_code=500, |
|
content={"error": f"Summarisation failure: {exc}"}) |
|
|
|
|
|
|
|
@app.post("/api/caption") |
|
async def caption_image(image: UploadFile = File(...)): |
|
"""`image` field name matches frontend (was `file` before).""" |
|
try: |
|
img_bytes = await image.read() |
|
img = Image.open(io.BytesIO(img_bytes)).convert("RGB") |
|
img.thumbnail((1024, 1024)) |
|
buf = BytesIO(); img.save(buf, format="JPEG") |
|
result = image_caption_client.image_to_text(buf.getvalue()) |
|
if isinstance(result, dict): |
|
caption = (result.get("generated_text") |
|
or result.get("caption") |
|
or "No caption found.") |
|
elif isinstance(result, list): |
|
caption = result[0].get("generated_text", "No caption found.") |
|
else: |
|
caption = str(result) |
|
return {"result": caption} |
|
except Exception as exc: |
|
return JSONResponse(status_code=500, |
|
content={"error": f"Caption failure: {exc}"}) |
|
|
|
|
|
|
|
@app.post("/api/qa") |
|
async def question_answering(file: UploadFile = File(...), |
|
question: str = Form(...)): |
|
try: |
|
if file.content_type.startswith("image/"): |
|
img_bytes = await file.read() |
|
img = Image.open(io.BytesIO(img_bytes)).convert("RGB") |
|
img.thumbnail((1024, 1024)) |
|
buf = BytesIO(); img.save(buf, format="JPEG") |
|
res = image_caption_client.image_to_text(buf.getvalue()) |
|
context = (res.get("generated_text") if isinstance(res, dict) |
|
else str(res)) |
|
else: |
|
context = process_uploaded_file(file)[:3000] |
|
|
|
if not context: |
|
return {"result": "No context β cannot answer."} |
|
|
|
answer = qa_client.question_answering(question=question, context=context) |
|
return {"result": answer.get("answer", "No answer found.")} |
|
except Exception as exc: |
|
return JSONResponse(status_code=500, |
|
content={"error": f"QA failure: {exc}"}) |
|
|
|
|
|
|
|
@app.get("/api/health") |
|
async def health(): |
|
return {"status": "healthy", |
|
"hf_token_set": bool(HUGGINGFACE_TOKEN), |
|
"version": app.version} |
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
import uvicorn |
|
uvicorn.run(app, host="0.0.0.0", port=PORT) |
|
|