File size: 7,958 Bytes
cf45a37
 
 
aa4f694
69fbdcb
cf45a37
e65d286
69fbdcb
 
8537019
e690364
 
e65d286
 
cf45a37
 
3e68ccf
 
 
 
69fbdcb
4184417
e65d286
 
4bd6659
724babe
e65d286
9c0dccd
44d6df8
 
e65d286
aa4f694
e690364
 
 
 
 
 
 
 
 
 
 
 
9c0dccd
4184417
69fbdcb
 
 
 
4184417
 
69fbdcb
 
4184417
69fbdcb
4184417
 
 
 
 
 
 
 
 
 
 
69fbdcb
 
 
 
e65d286
 
 
 
 
 
 
 
9c0dccd
cf45a37
 
 
 
 
 
 
e65d286
 
 
cf45a37
9c0dccd
 
cf45a37
 
 
a1424a7
17a0c62
 
e65d286
 
 
 
 
 
 
 
 
9c0dccd
cf45a37
3e68ccf
 
69fbdcb
 
 
 
e65d286
 
 
 
 
69fbdcb
 
 
 
cf45a37
 
 
e65d286
 
 
 
69fbdcb
 
cf45a37
44d6df8
 
69fbdcb
 
 
 
 
 
 
 
 
a1424a7
69fbdcb
 
 
 
cf45a37
 
 
 
44d6df8
cf45a37
 
 
5868f47
cf45a37
 
 
 
 
 
 
 
 
 
 
 
 
e65d286
 
 
 
 
 
 
 
 
 
 
5868f47
e65d286
 
 
 
 
44d6df8
 
 
 
 
 
 
 
 
 
 
 
 
46d1ee4
 
 
 
 
 
 
 
 
 
 
 
 
4184417
 
 
 
 
 
 
 
 
 
 
 
69fbdcb
3e68ccf
 
8537019
69fbdcb
44d6df8
69fbdcb
 
 
3e68ccf
69fbdcb
4184417
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
"""
Helper functions to access LLMs.
"""
import logging
import re
import sys
import urllib3
from typing import Tuple, Union

import requests
from requests.adapters import HTTPAdapter
from urllib3.util import Retry
from langchain_core.language_models import BaseLLM, BaseChatModel


sys.path.append('..')

from global_config import GlobalConfig


LLM_PROVIDER_MODEL_REGEX = re.compile(r'\[(.*?)\](.*)')
OLLAMA_MODEL_REGEX = re.compile(r'[a-zA-Z0-9._:-]+$')
# 94 characters long, only containing alphanumeric characters, hyphens, and underscores
API_KEY_REGEX = re.compile(r'^[a-zA-Z0-9_-]{6,94}$')
REQUEST_TIMEOUT = 35


logger = logging.getLogger(__name__)
logging.getLogger('httpx').setLevel(logging.WARNING)
logging.getLogger('httpcore').setLevel(logging.WARNING)
logging.getLogger('openai').setLevel(logging.ERROR)

retries = Retry(
    total=5,
    backoff_factor=0.25,
    backoff_jitter=0.3,
    status_forcelist=[502, 503, 504],
    allowed_methods={'POST'},
)
adapter = HTTPAdapter(max_retries=retries)
http_session = requests.Session()
http_session.mount('https://', adapter)
http_session.mount('http://', adapter)


def get_provider_model(provider_model: str, use_ollama: bool) -> Tuple[str, str]:
    """
    Parse and get LLM provider and model name from strings like `[provider]model/name-version`.

    :param provider_model: The provider, model name string from `GlobalConfig`.
    :param use_ollama: Whether Ollama is used (i.e., running in offline mode).
    :return: The provider and the model name; empty strings in case no matching pattern found.
    """

    provider_model = provider_model.strip()

    if use_ollama:
        match = OLLAMA_MODEL_REGEX.match(provider_model)
        if match:
            return GlobalConfig.PROVIDER_OLLAMA, match.group(0)
    else:
        match = LLM_PROVIDER_MODEL_REGEX.match(provider_model)

        if match:
            inside_brackets = match.group(1)
            outside_brackets = match.group(2)
            return inside_brackets, outside_brackets

    return '', ''


def is_valid_llm_provider_model(
        provider: str,
        model: str,
        api_key: str,
        azure_endpoint_url: str = '',
        azure_deployment_name: str = '',
        azure_api_version: str = '',
) -> bool:
    """
    Verify whether LLM settings are proper.
    This function does not verify whether `api_key` is correct. It only confirms that the key has
    at least five characters. Key verification is done when the LLM is created.

    :param provider: Name of the LLM provider.
    :param model: Name of the model.
    :param api_key: The API key or access token.
    :param azure_endpoint_url: Azure OpenAI endpoint URL.
    :param azure_deployment_name: Azure OpenAI deployment name.
    :param azure_api_version: Azure OpenAI API version.
    :return: `True` if the settings "look" OK; `False` otherwise.
    """

    if not provider or not model or provider not in GlobalConfig.VALID_PROVIDERS:
        return False

    if not api_key:
        return False

    if api_key and API_KEY_REGEX.match(api_key) is None:
        return False

    if provider == GlobalConfig.PROVIDER_AZURE_OPENAI:
        valid_url = urllib3.util.parse_url(azure_endpoint_url)
        all_status = all(
            [azure_api_version, azure_deployment_name, str(valid_url)]
        )
        return all_status

    return True


def get_langchain_llm(
        provider: str,
        model: str,
        max_new_tokens: int,
        api_key: str = '',
        azure_endpoint_url: str = '',
        azure_deployment_name: str = '',
        azure_api_version: str = '',
) -> Union[BaseLLM, BaseChatModel, None]:
    """
    Get an LLM based on the provider and model specified.

    :param provider: The LLM provider. Valid values are `hf` for Hugging Face.
    :param model: The name of the LLM.
    :param max_new_tokens: The maximum number of tokens to generate.
    :param api_key: API key or access token to use.
    :param azure_endpoint_url: Azure OpenAI endpoint URL.
    :param azure_deployment_name: Azure OpenAI deployment name.
    :param azure_api_version: Azure OpenAI API version.
    :return: An instance of the LLM or Chat model; `None` in case of any error.
    """

    if provider == GlobalConfig.PROVIDER_HUGGING_FACE:
        from langchain_community.llms.huggingface_endpoint import HuggingFaceEndpoint

        logger.debug('Getting LLM via HF endpoint: %s', model)
        return HuggingFaceEndpoint(
            repo_id=model,
            max_new_tokens=max_new_tokens,
            top_k=40,
            top_p=0.95,
            temperature=GlobalConfig.LLM_MODEL_TEMPERATURE,
            repetition_penalty=1.03,
            streaming=True,
            huggingfacehub_api_token=api_key,
            return_full_text=False,
            stop_sequences=['</s>'],
        )

    if provider == GlobalConfig.PROVIDER_GOOGLE_GEMINI:
        from google.generativeai.types.safety_types import HarmBlockThreshold, HarmCategory
        from langchain_google_genai import GoogleGenerativeAI

        logger.debug('Getting LLM via Google Gemini: %s', model)
        return GoogleGenerativeAI(
            model=model,
            temperature=GlobalConfig.LLM_MODEL_TEMPERATURE,
            # max_tokens=max_new_tokens,
            timeout=None,
            max_retries=2,
            google_api_key=api_key,
            safety_settings={
                HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT:
                    HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
                HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
                HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
                HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT:
                    HarmBlockThreshold.BLOCK_LOW_AND_ABOVE
            }
        )

    if provider == GlobalConfig.PROVIDER_AZURE_OPENAI:
        from langchain_openai import AzureChatOpenAI

        logger.debug('Getting LLM via Azure OpenAI: %s', model)

        # The `model` parameter is not used here; `azure_deployment` points to the desired name
        return AzureChatOpenAI(
            azure_deployment=azure_deployment_name,
            api_version=azure_api_version,
            azure_endpoint=azure_endpoint_url,
            temperature=GlobalConfig.LLM_MODEL_TEMPERATURE,
            # max_tokens=max_new_tokens,
            timeout=None,
            max_retries=1,
            api_key=api_key,
        )

    if provider == GlobalConfig.PROVIDER_COHERE:
        from langchain_cohere.llms import Cohere

        logger.debug('Getting LLM via Cohere: %s', model)
        return Cohere(
            temperature=GlobalConfig.LLM_MODEL_TEMPERATURE,
            max_tokens=max_new_tokens,
            timeout_seconds=None,
            max_retries=2,
            cohere_api_key=api_key,
            streaming=True,
        )

    if provider == GlobalConfig.PROVIDER_TOGETHER_AI:
        from langchain_together import Together

        logger.debug('Getting LLM via Together AI: %s', model)
        return Together(
            model=model,
            temperature=GlobalConfig.LLM_MODEL_TEMPERATURE,
            together_api_key=api_key,
            max_tokens=max_new_tokens,
            top_k=40,
            top_p=0.90,
        )

    if provider == GlobalConfig.PROVIDER_OLLAMA:
        from langchain_ollama.llms import OllamaLLM

        logger.debug('Getting LLM via Ollama: %s', model)
        return OllamaLLM(
            model=model,
            temperature=GlobalConfig.LLM_MODEL_TEMPERATURE,
            num_predict=max_new_tokens,
            format='json',
            streaming=True,
        )

    return None


if __name__ == '__main__':
    inputs = [
        '[co]Cohere',
        '[hf]mistralai/Mistral-7B-Instruct-v0.2',
        '[gg]gemini-1.5-flash-002'
    ]

    for text in inputs:
        print(get_provider_model(text, use_ollama=False))