import streamlit as st from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.cluster import KMeans from sklearn.metrics.pairwise import linear_kernel, cosine_similarity import nltk from nltk.corpus import stopwords from nltk import FreqDist import re import os import base64 from graphviz import Digraph from io import BytesIO import networkx as nx import matplotlib.pyplot as plt st.set_page_config( page_title="πŸ“ΊTranscriptπŸ“œEDAπŸ”NLTK", page_icon="🌠", layout="wide", initial_sidebar_state="expanded", menu_items={ 'Get Help': 'https://huggingface.co./awacke1', 'Report a bug': "https://huggingface.co./awacke1", 'About': "https://huggingface.co./awacke1" } ) st.markdown(''' 1. πŸ” **Transcript Insights Using Exploratory Data Analysis (EDA)** πŸ“Š - Unveil hidden patterns πŸ•΅οΈβ€β™‚οΈ and insights 🧠 in your transcripts. πŸ†. 2. πŸ“œ **Natural Language Toolkit (NLTK)** πŸ› οΈ:- your compass 🧭 in the vast landscape of NLP. 3. πŸ“Ί **Transcript Analysis** πŸ“ˆ:Speech recognition πŸŽ™οΈ and thematic extraction 🌐, audiovisual content to actionable insights πŸ”‘. ''') # πŸ“₯ Download NLTK data @st.cache_resource def download_nltk_data(): try: nltk.data.find('tokenizers/punkt') nltk.data.find('corpora/stopwords') except LookupError: with st.spinner('Downloading required NLTK data...'): nltk.download('punkt') nltk.download('stopwords') st.success('NLTK data is ready!') download_nltk_data() # πŸ•°οΈ Remove timestamps def remove_timestamps(text): return re.sub(r'\d{1,2}:\d{2}\n.*\n', '', text) # πŸ“Š Extract high information words def extract_high_information_words(text, top_n=10): try: words = [word.lower() for word in nltk.word_tokenize(text) if word.isalpha()] stop_words = set(stopwords.words('english')) filtered_words = [word for word in words if word not in stop_words] return [word for word, _ in FreqDist(filtered_words).most_common(top_n)] except Exception as e: st.error(f"Error in extract_high_information_words: {str(e)}") return [] # πŸ”— Create relationship graph def create_relationship_graph(words): graph = Digraph() for i, word in enumerate(words): graph.node(str(i), word) if i > 0: graph.edge(str(i-1), str(i), label=word) return graph # πŸ“ˆ Display relationship graph def display_relationship_graph(words): try: graph = create_relationship_graph(words) st.graphviz_chart(graph) except Exception as e: st.error(f"Error displaying relationship graph: {str(e)}") # πŸ” Extract context words def extract_context_words(text, high_information_words): words = nltk.word_tokenize(text) return [(words[i-1] if i > 0 else None, word, words[i+1] if i < len(words)-1 else None) for i, word in enumerate(words) if word.lower() in high_information_words] # πŸ“Š Create context graph def create_context_graph(context_words): graph = Digraph() for i, (before, high, after) in enumerate(context_words): if before: graph.node(f'before{i}', before, shape='box') graph.edge(f'before{i}', f'high{i}', label=before) graph.node(f'high{i}', high, shape='ellipse') if after: graph.node(f'after{i}', after, shape='diamond') graph.edge(f'high{i}', f'after{i}', label=after) return graph # πŸ“ˆ Display context graph def display_context_graph(context_words): try: graph = create_context_graph(context_words) st.graphviz_chart(graph) except Exception as e: st.error(f"Error displaying context graph: {str(e)}") # πŸ“Š Display context table def display_context_table(context_words): table = "| Before | High Info Word | After |\n|--------|----------------|-------|\n" table += "\n".join(f"| {b if b else ''} | {h} | {a if a else ''} |" for b, h, a in context_words) st.markdown(table) # πŸ“ Load example files def load_example_files(): excluded_files = {'freeze.txt', 'requirements.txt', 'packages.txt', 'pre-requirements.txt'} example_files = [f for f in os.listdir() if f.endswith('.txt') and f not in excluded_files] if example_files: selected_file = st.selectbox("πŸ“„ Select an example file:", example_files) if st.button(f"πŸ“‚ Load {selected_file}"): with open(selected_file, 'r', encoding="utf-8") as file: return file.read() else: st.write("No suitable example files found.") return None # 🧠 Cluster sentences def cluster_sentences(sentences, num_clusters): sentences = [s for s in sentences if len(s) > 10] num_clusters = min(num_clusters, len(sentences)) vectorizer = TfidfVectorizer() X = vectorizer.fit_transform(sentences) kmeans = KMeans(n_clusters=num_clusters, random_state=42) kmeans.fit(X) clustered_sentences = [[] for _ in range(num_clusters)] for i, label in enumerate(kmeans.labels_): similarity = linear_kernel(kmeans.cluster_centers_[label:label+1], X[i:i+1]).flatten()[0] clustered_sentences[label].append((similarity, sentences[i])) return [[s for _, s in sorted(cluster, reverse=True)] for cluster in clustered_sentences] # πŸ’Ύ Get text file download link def get_text_file_download_link(text_to_download, filename='Output.txt', button_label="πŸ’Ύ Save"): b64 = base64.b64encode(text_to_download.encode()).decode() return f'{button_label}' # πŸ“Š Get high info words per cluster def get_high_info_words_per_cluster(cluster_sentences, num_words=5): return [extract_high_information_words(" ".join(cluster), num_words) for cluster in cluster_sentences] # πŸ“Š Plot cluster words def plot_cluster_words(cluster_sentences): for i, cluster in enumerate(cluster_sentences): words = re.findall(r'\b[a-z]{4,}\b', " ".join(cluster)) word_freq = FreqDist(words) top_words = [word for word, _ in word_freq.most_common(20)] vectorizer = TfidfVectorizer() X = vectorizer.fit_transform(top_words) similarity_matrix = cosine_similarity(X.toarray()) G = nx.from_numpy_array(similarity_matrix) pos = nx.spring_layout(G, k=0.5) plt.figure(figsize=(8, 6)) nx.draw_networkx(G, pos, node_size=500, font_size=12, font_weight='bold', with_labels=True, labels={i: word for i, word in enumerate(top_words)}, node_color='skyblue', edge_color='gray') plt.axis('off') plt.title(f"Cluster {i+1} Word Arrangement") st.pyplot(plt) st.markdown(f"**Cluster {i+1} Details:**") st.markdown(f"Top Words: {', '.join(top_words)}") st.markdown(f"Number of Sentences: {len(cluster)}") st.markdown("---") # Main code for UI uploaded_file = st.file_uploader("πŸ“ Choose a .txt file", type=['txt']) example_text = load_example_files() if example_text: file_text = example_text elif uploaded_file: file_text = uploaded_file.read().decode("utf-8") else: file_text = "" if file_text: text_without_timestamps = remove_timestamps(file_text) top_words = extract_high_information_words(text_without_timestamps, 10) with st.expander("πŸ“Š Top 10 High Information Words"): st.write(top_words) with st.expander("πŸ“ˆ Relationship Graph"): display_relationship_graph(top_words) context_words = extract_context_words(text_without_timestamps, top_words) with st.expander("πŸ”— Context Graph"): display_context_graph(context_words) with st.expander("πŸ“‘ Context Table"): display_context_table(context_words) sentences = [line.strip() for line in file_text.split('\n') if len(line.strip()) > 10] num_sentences = len(sentences) st.write(f"Total Sentences: {num_sentences}") num_clusters = st.slider("Number of Clusters", min_value=2, max_value=10, value=5) clustered_sentences = cluster_sentences(sentences, num_clusters) col1, col2 = st.columns(2) with col1: st.subheader("Original Text") original_text = "\n".join(sentences) st.text_area("Original Sentences", value=original_text, height=400) with col2: st.subheader("Clustered Text") clusters = "" clustered_text = "" cluster_high_info_words = get_high_info_words_per_cluster(clustered_sentences) for i, cluster in enumerate(clustered_sentences): cluster_text = "\n".join(cluster) high_info_words = ", ".join(cluster_high_info_words[i]) clusters += f"Cluster {i+1} (High Info Words: {high_info_words})\n" clustered_text += f"Cluster {i+1} (High Info Words: {high_info_words}):\n{cluster_text}\n\n" st.text_area("Clusters", value=clusters, height=200) st.text_area("Clustered Sentences", value=clustered_text, height=200) clustered_sentences_flat = [sentence for cluster in clustered_sentences for sentence in cluster] if set(sentences) == set(clustered_sentences_flat): st.write("βœ… All sentences are accounted for in the clustered output.") else: st.write("❌ Some sentences are missing in the clustered output.") plot_cluster_words(clustered_sentences) st.markdown("For more information and updates, visit our [help page](https://huggingface.co./awacke1).")