Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import streamlit as st
|
2 |
-
import pandas as pd
|
3 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
4 |
from sklearn.cluster import KMeans
|
5 |
from sklearn.metrics.pairwise import linear_kernel, cosine_similarity
|
@@ -32,56 +31,6 @@ st.markdown('''
|
|
32 |
3. πΊ **Transcript Analysis** π:Speech recognition ποΈ and thematic extraction π, audiovisual content to actionable insights π.
|
33 |
''')
|
34 |
|
35 |
-
# π§ Cluster sentences using K-means
|
36 |
-
def cluster_sentences(sentences, num_clusters):
|
37 |
-
sentences = [s for s in sentences if len(s) > 10]
|
38 |
-
num_clusters = min(num_clusters, len(sentences))
|
39 |
-
vectorizer = TfidfVectorizer()
|
40 |
-
X = vectorizer.fit_transform(sentences)
|
41 |
-
kmeans = KMeans(n_clusters=num_clusters, random_state=42)
|
42 |
-
kmeans.fit(X)
|
43 |
-
clustered_sentences = [[] for _ in range(num_clusters)]
|
44 |
-
for i, label in enumerate(kmeans.labels_):
|
45 |
-
similarity = linear_kernel(kmeans.cluster_centers_[label:label+1], X[i:i+1]).flatten()[0]
|
46 |
-
clustered_sentences[label].append((similarity, sentences[i]))
|
47 |
-
return [[s for _, s in sorted(cluster, reverse=True)] for cluster in clustered_sentences]
|
48 |
-
|
49 |
-
# π Create context graph
|
50 |
-
def create_context_graph(context_words):
|
51 |
-
graph = Digraph()
|
52 |
-
for i, (before, high, after) in enumerate(context_words):
|
53 |
-
if before:
|
54 |
-
graph.node(f'before{i}', before, shape='box')
|
55 |
-
graph.edge(f'before{i}', f'high{i}', label=before)
|
56 |
-
graph.node(f'high{i}', high, shape='ellipse')
|
57 |
-
if after:
|
58 |
-
graph.node(f'after{i}', after, shape='diamond')
|
59 |
-
graph.edge(f'high{i}', f'after{i}', label=after)
|
60 |
-
return graph
|
61 |
-
|
62 |
-
# π Create relationship graph
|
63 |
-
def create_relationship_graph(words):
|
64 |
-
graph = Digraph()
|
65 |
-
for i, word in enumerate(words):
|
66 |
-
graph.node(str(i), word)
|
67 |
-
if i > 0:
|
68 |
-
graph.edge(str(i-1), str(i), label=word)
|
69 |
-
return graph
|
70 |
-
|
71 |
-
# π Display context graph
|
72 |
-
def display_context_graph(context_words):
|
73 |
-
st.graphviz_chart(create_context_graph(context_words))
|
74 |
-
|
75 |
-
# π Display context table
|
76 |
-
def display_context_table(context_words):
|
77 |
-
table = "| Before | High Info Word | After |\n|--------|----------------|-------|\n"
|
78 |
-
table += "\n".join(f"| {b if b else ''} | {h} | {a if a else ''} |" for b, h, a in context_words)
|
79 |
-
st.markdown(table)
|
80 |
-
|
81 |
-
# π Display relationship graph
|
82 |
-
def display_relationship_graph(words):
|
83 |
-
st.graphviz_chart(create_relationship_graph(words))
|
84 |
-
|
85 |
# π₯ Download NLTK data
|
86 |
@st.cache_resource
|
87 |
def download_nltk_data():
|
@@ -94,11 +43,11 @@ def download_nltk_data():
|
|
94 |
nltk.download('stopwords')
|
95 |
st.success('NLTK data is ready!')
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
|
103 |
# π Extract high information words
|
104 |
def extract_high_information_words(text, top_n=10):
|
@@ -111,25 +60,91 @@ def extract_high_information_words(text, top_n=10):
|
|
111 |
st.error(f"Error in extract_high_information_words: {str(e)}")
|
112 |
return []
|
113 |
|
114 |
-
#
|
115 |
-
def
|
116 |
-
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
119 |
|
120 |
-
#
|
121 |
-
def
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
# πΎ Get text file download link
|
125 |
def get_text_file_download_link(text_to_download, filename='Output.txt', button_label="πΎ Save"):
|
126 |
b64 = base64.b64encode(text_to_download.encode()).decode()
|
127 |
return f'<a href="data:file/txt;base64,{b64}" download="{filename}" style="margin-top:20px;">{button_label}</a>'
|
128 |
|
129 |
-
# π
|
130 |
-
def
|
131 |
-
|
132 |
-
process_file(os.path.abspath(file_name))
|
133 |
|
134 |
# π Plot cluster words
|
135 |
def plot_cluster_words(cluster_sentences):
|
@@ -154,91 +169,72 @@ def plot_cluster_words(cluster_sentences):
|
|
154 |
st.markdown(f"Number of Sentences: {len(cluster)}")
|
155 |
st.markdown("---")
|
156 |
|
157 |
-
#
|
158 |
-
|
159 |
-
try:
|
160 |
-
with open(file_path, 'r', encoding="utf-8") as file:
|
161 |
-
file_text = file.read()
|
162 |
-
text_without_timestamps = remove_timestamps(file_text)
|
163 |
-
top_words = extract_high_information_words(text_without_timestamps, 10)
|
164 |
-
|
165 |
-
with st.expander("π Top 10 High Information Words"):
|
166 |
-
st.write(top_words)
|
167 |
-
|
168 |
-
with st.expander("π Relationship Graph"):
|
169 |
-
display_relationship_graph(top_words) if top_words else st.warning("Unable to generate relationship graph.")
|
170 |
-
|
171 |
-
context_words = extract_context_words(text_without_timestamps, top_words)
|
172 |
-
|
173 |
-
with st.expander("π Context Graph"):
|
174 |
-
display_context_graph(context_words) if context_words else st.warning("Unable to generate context graph.")
|
175 |
-
|
176 |
-
with st.expander("π Context Table"):
|
177 |
-
display_context_table(context_words) if context_words else st.warning("Unable to display context table.")
|
178 |
-
|
179 |
-
sentences = [line.strip() for line in file_text.split('\n') if len(line.strip()) > 10]
|
180 |
-
st.write(f"Total Sentences: {len(sentences)}")
|
181 |
-
|
182 |
-
num_clusters = st.slider("Number of Clusters", min_value=2, max_value=10, value=5)
|
183 |
-
clustered_sentences = cluster_sentences(sentences, num_clusters)
|
184 |
-
|
185 |
-
col1, col2 = st.columns(2)
|
186 |
-
with col1:
|
187 |
-
st.subheader("Original Text")
|
188 |
-
st.text_area("Original Sentences", value="\n".join(sentences), height=400)
|
189 |
-
|
190 |
-
with col2:
|
191 |
-
st.subheader("Clustered Text")
|
192 |
-
cluster_high_info_words = get_high_info_words_per_cluster(clustered_sentences)
|
193 |
-
clusters = "\n".join(f"Cluster {i+1} (High Info Words: {', '.join(words)})"
|
194 |
-
for i, words in enumerate(cluster_high_info_words))
|
195 |
-
clustered_text = "\n\n".join(f"Cluster {i+1} (High Info Words: {', '.join(words)}):\n{cluster_text}"
|
196 |
-
for i, (words, cluster_text) in enumerate(zip(cluster_high_info_words,
|
197 |
-
["\n".join(cluster) for cluster in clustered_sentences])))
|
198 |
-
st.text_area("Clusters", value=clusters, height=200)
|
199 |
-
st.text_area("Clustered Sentences", value=clustered_text, height=200)
|
200 |
-
|
201 |
-
clustered_sentences_flat = [sentence for cluster in clustered_sentences for sentence in cluster]
|
202 |
-
st.write("β
All sentences are accounted for in the clustered output." if set(sentences) == set(clustered_sentences_flat)
|
203 |
-
else "β Some sentences are missing in the clustered output.")
|
204 |
-
|
205 |
-
plot_cluster_words(clustered_sentences)
|
206 |
-
except Exception as e:
|
207 |
-
st.error(f"Error processing file: {str(e)}")
|
208 |
|
209 |
-
|
210 |
-
def remove_timestamps(text):
|
211 |
-
return re.sub(r'\d{1,2}:\d{2}\n.*\n', '', text)
|
212 |
|
213 |
-
|
214 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
st.
|
221 |
-
|
222 |
-
|
223 |
-
cols = st.columns(len(txt_files_df))
|
224 |
-
for i, (_, row) in enumerate(txt_files_df.iterrows()):
|
225 |
-
if cols[i].button(f":file_folder: {row['File Name']}"):
|
226 |
-
perform_eda(row['File Name'])
|
227 |
-
|
228 |
-
if "messages" not in st.session_state:
|
229 |
-
st.session_state.messages = []
|
230 |
-
|
231 |
-
for message in st.session_state.messages:
|
232 |
-
with st.chat_message(message["role"]):
|
233 |
-
st.markdown(message["content"])
|
234 |
-
|
235 |
-
if prompt := st.chat_input("Ask a question about the data"):
|
236 |
-
st.session_state.messages.append({"role": "user", "content": prompt})
|
237 |
-
with st.chat_message("user"):
|
238 |
-
st.markdown(prompt)
|
239 |
-
response = f"You asked: {prompt}\n\nThis is a placeholder response. In a real application, you would process the user's question and provide an answer based on the data and EDA results."
|
240 |
-
st.session_state.messages.append({"role": "assistant", "content": response})
|
241 |
-
with st.chat_message("assistant"):
|
242 |
-
st.markdown(response)
|
243 |
|
244 |
st.markdown("For more information and updates, visit our [help page](https://huggingface.co/awacke1).")
|
|
|
1 |
import streamlit as st
|
|
|
2 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
3 |
from sklearn.cluster import KMeans
|
4 |
from sklearn.metrics.pairwise import linear_kernel, cosine_similarity
|
|
|
31 |
3. πΊ **Transcript Analysis** π:Speech recognition ποΈ and thematic extraction π, audiovisual content to actionable insights π.
|
32 |
''')
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
# π₯ Download NLTK data
|
35 |
@st.cache_resource
|
36 |
def download_nltk_data():
|
|
|
43 |
nltk.download('stopwords')
|
44 |
st.success('NLTK data is ready!')
|
45 |
|
46 |
+
download_nltk_data()
|
47 |
+
|
48 |
+
# π°οΈ Remove timestamps
|
49 |
+
def remove_timestamps(text):
|
50 |
+
return re.sub(r'\d{1,2}:\d{2}\n.*\n', '', text)
|
51 |
|
52 |
# π Extract high information words
|
53 |
def extract_high_information_words(text, top_n=10):
|
|
|
60 |
st.error(f"Error in extract_high_information_words: {str(e)}")
|
61 |
return []
|
62 |
|
63 |
+
# π Create relationship graph
|
64 |
+
def create_relationship_graph(words):
|
65 |
+
graph = Digraph()
|
66 |
+
for i, word in enumerate(words):
|
67 |
+
graph.node(str(i), word)
|
68 |
+
if i > 0:
|
69 |
+
graph.edge(str(i-1), str(i), label=word)
|
70 |
+
return graph
|
71 |
|
72 |
+
# π Display relationship graph
|
73 |
+
def display_relationship_graph(words):
|
74 |
+
try:
|
75 |
+
graph = create_relationship_graph(words)
|
76 |
+
st.graphviz_chart(graph)
|
77 |
+
except Exception as e:
|
78 |
+
st.error(f"Error displaying relationship graph: {str(e)}")
|
79 |
+
|
80 |
+
# π Extract context words
|
81 |
+
def extract_context_words(text, high_information_words):
|
82 |
+
words = nltk.word_tokenize(text)
|
83 |
+
return [(words[i-1] if i > 0 else None, word, words[i+1] if i < len(words)-1 else None)
|
84 |
+
for i, word in enumerate(words) if word.lower() in high_information_words]
|
85 |
+
|
86 |
+
# π Create context graph
|
87 |
+
def create_context_graph(context_words):
|
88 |
+
graph = Digraph()
|
89 |
+
for i, (before, high, after) in enumerate(context_words):
|
90 |
+
if before:
|
91 |
+
graph.node(f'before{i}', before, shape='box')
|
92 |
+
graph.edge(f'before{i}', f'high{i}', label=before)
|
93 |
+
graph.node(f'high{i}', high, shape='ellipse')
|
94 |
+
if after:
|
95 |
+
graph.node(f'after{i}', after, shape='diamond')
|
96 |
+
graph.edge(f'high{i}', f'after{i}', label=after)
|
97 |
+
return graph
|
98 |
+
|
99 |
+
# π Display context graph
|
100 |
+
def display_context_graph(context_words):
|
101 |
+
try:
|
102 |
+
graph = create_context_graph(context_words)
|
103 |
+
st.graphviz_chart(graph)
|
104 |
+
except Exception as e:
|
105 |
+
st.error(f"Error displaying context graph: {str(e)}")
|
106 |
+
|
107 |
+
# π Display context table
|
108 |
+
def display_context_table(context_words):
|
109 |
+
table = "| Before | High Info Word | After |\n|--------|----------------|-------|\n"
|
110 |
+
table += "\n".join(f"| {b if b else ''} | {h} | {a if a else ''} |" for b, h, a in context_words)
|
111 |
+
st.markdown(table)
|
112 |
+
|
113 |
+
# π Load example files
|
114 |
+
def load_example_files():
|
115 |
+
excluded_files = {'freeze.txt', 'requirements.txt', 'packages.txt', 'pre-requirements.txt'}
|
116 |
+
example_files = [f for f in os.listdir() if f.endswith('.txt') and f not in excluded_files]
|
117 |
+
if example_files:
|
118 |
+
selected_file = st.selectbox("π Select an example file:", example_files)
|
119 |
+
if st.button(f"π Load {selected_file}"):
|
120 |
+
with open(selected_file, 'r', encoding="utf-8") as file:
|
121 |
+
return file.read()
|
122 |
+
else:
|
123 |
+
st.write("No suitable example files found.")
|
124 |
+
return None
|
125 |
+
|
126 |
+
# π§ Cluster sentences
|
127 |
+
def cluster_sentences(sentences, num_clusters):
|
128 |
+
sentences = [s for s in sentences if len(s) > 10]
|
129 |
+
num_clusters = min(num_clusters, len(sentences))
|
130 |
+
vectorizer = TfidfVectorizer()
|
131 |
+
X = vectorizer.fit_transform(sentences)
|
132 |
+
kmeans = KMeans(n_clusters=num_clusters, random_state=42)
|
133 |
+
kmeans.fit(X)
|
134 |
+
clustered_sentences = [[] for _ in range(num_clusters)]
|
135 |
+
for i, label in enumerate(kmeans.labels_):
|
136 |
+
similarity = linear_kernel(kmeans.cluster_centers_[label:label+1], X[i:i+1]).flatten()[0]
|
137 |
+
clustered_sentences[label].append((similarity, sentences[i]))
|
138 |
+
return [[s for _, s in sorted(cluster, reverse=True)] for cluster in clustered_sentences]
|
139 |
|
140 |
# πΎ Get text file download link
|
141 |
def get_text_file_download_link(text_to_download, filename='Output.txt', button_label="πΎ Save"):
|
142 |
b64 = base64.b64encode(text_to_download.encode()).decode()
|
143 |
return f'<a href="data:file/txt;base64,{b64}" download="{filename}" style="margin-top:20px;">{button_label}</a>'
|
144 |
|
145 |
+
# π Get high info words per cluster
|
146 |
+
def get_high_info_words_per_cluster(cluster_sentences, num_words=5):
|
147 |
+
return [extract_high_information_words(" ".join(cluster), num_words) for cluster in cluster_sentences]
|
|
|
148 |
|
149 |
# π Plot cluster words
|
150 |
def plot_cluster_words(cluster_sentences):
|
|
|
169 |
st.markdown(f"Number of Sentences: {len(cluster)}")
|
170 |
st.markdown("---")
|
171 |
|
172 |
+
# Main code for UI
|
173 |
+
uploaded_file = st.file_uploader("π Choose a .txt file", type=['txt'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
+
example_text = load_example_files()
|
|
|
|
|
176 |
|
177 |
+
if example_text:
|
178 |
+
file_text = example_text
|
179 |
+
elif uploaded_file:
|
180 |
+
file_text = uploaded_file.read().decode("utf-8")
|
181 |
+
else:
|
182 |
+
file_text = ""
|
183 |
+
|
184 |
+
if file_text:
|
185 |
+
text_without_timestamps = remove_timestamps(file_text)
|
186 |
+
top_words = extract_high_information_words(text_without_timestamps, 10)
|
187 |
+
|
188 |
+
with st.expander("π Top 10 High Information Words"):
|
189 |
+
st.write(top_words)
|
190 |
+
|
191 |
+
with st.expander("π Relationship Graph"):
|
192 |
+
display_relationship_graph(top_words)
|
193 |
+
|
194 |
+
context_words = extract_context_words(text_without_timestamps, top_words)
|
195 |
+
|
196 |
+
with st.expander("π Context Graph"):
|
197 |
+
display_context_graph(context_words)
|
198 |
+
|
199 |
+
with st.expander("π Context Table"):
|
200 |
+
display_context_table(context_words)
|
201 |
+
|
202 |
+
sentences = [line.strip() for line in file_text.split('\n') if len(line.strip()) > 10]
|
203 |
+
|
204 |
+
num_sentences = len(sentences)
|
205 |
+
st.write(f"Total Sentences: {num_sentences}")
|
206 |
+
|
207 |
+
num_clusters = st.slider("Number of Clusters", min_value=2, max_value=10, value=5)
|
208 |
+
clustered_sentences = cluster_sentences(sentences, num_clusters)
|
209 |
+
|
210 |
+
col1, col2 = st.columns(2)
|
211 |
+
|
212 |
+
with col1:
|
213 |
+
st.subheader("Original Text")
|
214 |
+
original_text = "\n".join(sentences)
|
215 |
+
st.text_area("Original Sentences", value=original_text, height=400)
|
216 |
+
|
217 |
+
with col2:
|
218 |
+
st.subheader("Clustered Text")
|
219 |
+
clusters = ""
|
220 |
+
clustered_text = ""
|
221 |
+
cluster_high_info_words = get_high_info_words_per_cluster(clustered_sentences)
|
222 |
+
|
223 |
+
for i, cluster in enumerate(clustered_sentences):
|
224 |
+
cluster_text = "\n".join(cluster)
|
225 |
+
high_info_words = ", ".join(cluster_high_info_words[i])
|
226 |
+
clusters += f"Cluster {i+1} (High Info Words: {high_info_words})\n"
|
227 |
+
clustered_text += f"Cluster {i+1} (High Info Words: {high_info_words}):\n{cluster_text}\n\n"
|
228 |
+
|
229 |
+
st.text_area("Clusters", value=clusters, height=200)
|
230 |
+
st.text_area("Clustered Sentences", value=clustered_text, height=200)
|
231 |
|
232 |
+
clustered_sentences_flat = [sentence for cluster in clustered_sentences for sentence in cluster]
|
233 |
+
if set(sentences) == set(clustered_sentences_flat):
|
234 |
+
st.write("β
All sentences are accounted for in the clustered output.")
|
235 |
+
else:
|
236 |
+
st.write("β Some sentences are missing in the clustered output.")
|
237 |
+
|
238 |
+
plot_cluster_words(clustered_sentences)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
|
240 |
st.markdown("For more information and updates, visit our [help page](https://huggingface.co/awacke1).")
|