import pandas as pd import plotly.express as px import streamlit as st import jsonlines st.markdown(""" | 📝 #Definition | 📋 Data Fields | | --- | --- | | 🤝 asking for more help or #treatment | 📄 Patient info, Referral details | | 💼 about a patient's health #problem or #limits | 📄 Patient info, Health #problem details | | 💊 allowing medicine | 📄 Patient info, #Medicine #details | | 🔎 explaining a #patient's health #problem | 📄 Patient info, Health #problem details | | 🚑 plan for getting better | 📄 Patient info, #Treatment details | | 🏥 patient needs surgery | 📄 Patient info, #Surgery details | | 🏃 patient can do activities | 📄 Patient info, #Activity details | | 📅 reminding about appointments | 📄 Patient info, #Appointment details | | ♿ patient's disability | 📄 Patient info, #Disability details | | 🍎 teaching about health | 📄 Patient info, #Education topic | """) # Create a DataFrame with CPT codes, procedures, and expected costs import pandas as pd import plotly.graph_objects as go import streamlit as st import jsonlines import base64 from datetime import datetime # Create a DataFrame with Code types, values, descriptions, and expected costs data = { 'Code Type': ['CPT', 'SNOMED', 'RXNORM', 'DEA', 'LOINC', 'ORI', 'ORU', 'CCD'], 'Code Value': ['99201', 'A-12345', 'R-12345', 'D-12345', 'L-12345', 'O-12345', 'U-12345', 'C-12345'], 'Code Description': ['Office/Outpatient Visit', 'Inpatient Consultation', 'Initial Hospital Care', 'Subsequent Hospital Care', 'Critical Care Services', 'Procedure 6', 'Procedure 7', 'Procedure 8'], 'Expected Cost': [100, 200, 150, 250, 300, 350, 400, 450] } df = pd.DataFrame(data) # Create a sunburst plot with Plotly fig = go.Figure(go.Sunburst( labels=df['Code Type'], parents=['']*len(df), values=df['Expected Cost'], text=df['Code Description'], hoverinfo="label+value+text", branchvalues="total", )) fig.update_layout(margin=dict(t=0, l=0, r=0, b=0)) # Display the sunburst plot in Streamlit st.plotly_chart(fig) # Save DataFrame to JSONL file timestamp = datetime.now().strftime("%Y%m%d%H%M%S") filename = f"output_{timestamp}.jsonl" with jsonlines.open(filename, mode='w') as writer: writer.write(df.to_dict(orient='records')) # Function to create a download link def create_download_link(filename): with open(filename, 'r') as file: data = file.read() b64 = base64.b64encode(data.encode()).decode() return f'Download data as JSONL' # Display a link to download the JSONL file st.markdown(create_download_link(filename), unsafe_allow_html=True)