Spaces:
Running
Running
File size: 3,097 Bytes
d28a1b5 8b38625 d28a1b5 8b38625 d28a1b5 e60e5d3 d28a1b5 8b38625 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
#import streamlit as st
#from gradio_client import Client
#client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
#result = client.predict(
# "What is Semantic and Episodic memory?", # str in 'Search' Textbox component
# 4, # float (numeric value between 4 and 10) in 'Top n results as context' Slider component
# "Semantic Search - up to 10 Mar 2024", # Literal['Semantic Search - up to 10 Mar 2024', 'Arxiv Search - Latest - (EXPERIMENTAL)'] in 'Search Source' Dropdown component
# "mistralai/Mixtral-8x7B-Instruct-v0.1", # Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] in 'LLM Model' Dropdown component
# api_name="/update_with_rag_md"
#)
#st.markdown(result)
import streamlit as st
import os
from datetime import datetime
from gradio_client import Client
def save_file(content, file_type):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
file_name = f"{file_type}_{timestamp}.md"
with open(file_name, "w") as file:
file.write(content)
return file_name
def load_file(file_name):
with open(file_name, "r") as file:
content = file.read()
return content
def main():
st.set_page_config(page_title="Memory Flag System")
st.title("Memory Flag System")
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
search_query = st.text_input("Search")
top_n_results = st.slider("Top n results as context", min_value=4, max_value=100, value=100)
search_source = st.selectbox("Search Source", ["Semantic Search - up to 10 Mar 2024", "Arxiv Search - Latest - (EXPERIMENTAL)"])
llm_model = st.selectbox("LLM Model", ["mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.2", "google/gemma-7b-it", "None"])
if st.button("Search"):
result = client.predict(
search_query,
top_n_results,
search_source,
llm_model,
api_name="/update_with_rag_md"
)
st.markdown(result)
file_type = st.radio("Select Memory Flag", ("Semantic", "Episodic"))
if st.button("Save"):
file_name = save_file(result, file_type)
st.success(f"File saved: {file_name}")
saved_files = [f for f in os.listdir(".") if f.endswith(".md")]
selected_file = st.sidebar.selectbox("Saved Files", saved_files)
if selected_file:
file_content = load_file(selected_file)
st.sidebar.markdown(file_content)
if st.sidebar.button("π Edit"):
edited_content = st.text_area("Edit File", value=file_content, height=400)
new_file_name = st.text_input("File Name", value=selected_file)
if st.button("πΎ Save"):
with open(new_file_name, "w") as file:
file.write(edited_content)
st.success(f"File updated: {new_file_name}")
if st.sidebar.button("ποΈ Delete"):
os.remove(selected_file)
st.warning(f"File deleted: {selected_file}")
if __name__ == "__main__":
main()
|