File size: 36,286 Bytes
3fb45c5
 
 
18e41a1
09bd973
 
18e41a1
 
 
 
 
 
 
 
 
 
 
 
 
 
a0feab3
09bd973
 
18e41a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0feab3
 
a08b1c9
 
18e41a1
 
f49990d
18e41a1
f57fd10
 
 
 
 
 
 
18e41a1
7844ece
 
 
 
a08b1c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7844ece
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fdb778
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75aa023
 
 
 
 
 
 
d36cb08
 
 
 
 
 
 
 
 
 
0bc666d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d36cb08
 
 
6fdb778
b3ff8e7
 
 
 
 
 
 
 
 
 
 
 
 
6eae6cf
b3ff8e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6eae6cf
b3ff8e7
 
 
 
6eae6cf
 
b3ff8e7
 
 
 
 
 
 
 
 
 
 
09bd973
1e4ffa7
18e41a1
09bd973
 
bb18704
 
b3b9ed7
bb18704
 
 
 
 
 
 
 
 
 
 
 
 
 
4a8f717
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ed00a7
 
 
4a8f717
bb18704
182f76e
bb18704
 
2ec9286
d61b72f
2ec9286
 
d61b72f
 
 
2ec9286
d36cb08
 
bb18704
6ab9b23
 
 
 
 
 
 
 
 
 
 
 
 
 
520e6e1
6ab9b23
dc74f0c
 
0280a6a
d36cb08
 
 
8f14145
 
 
 
 
 
d36cb08
 
 
8f14145
24a753a
aebecba
24a753a
bb18704
 
4a8f717
 
0280a6a
d36cb08
 
 
bb18704
4a8f717
 
0280a6a
d36cb08
 
8f14145
e95063c
1e4ffa7
 
bb18704
e95063c
2f6bcce
e95063c
bb18704
 
1e4ffa7
 
 
 
 
 
 
d36cb08
 
 
1e4ffa7
 
 
 
 
 
d36cb08
 
 
1e4ffa7
 
 
 
 
 
d36cb08
 
 
1e4ffa7
 
 
 
0dee2f1
1e4ffa7
d36cb08
 
 
0dee2f1
1e4ffa7
0dee2f1
b78085f
 
d105d10
dbcba60
 
 
 
d105d10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b78085f
 
 
 
 
 
d105d10
 
 
d36cb08
 
d105d10
b78085f
 
 
 
 
 
 
 
d105d10
18e41a1
 
 
 
 
 
 
 
 
 
 
 
d36cb08
 
 
 
18e41a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0feab3
18e41a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d36cb08
 
 
18e41a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d36cb08
 
18e41a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d36cb08
 
 
18e41a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
import huggingface_hub
from huggingface_hub import InferenceClient

import streamlit as st
import streamlit.components.v1 as components

import openai
import os
import base64
import glob
import io
import json
import mistune
import pytz
import math
import requests
import sys
import time
import re
import textract
import zipfile  
import random

from datetime import datetime
from openai import ChatCompletion
from xml.etree import ElementTree as ET
from bs4 import BeautifulSoup
from collections import deque
from audio_recorder_streamlit import audio_recorder
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from templates import css, bot_template, user_template
from io import BytesIO

import streamlit.components.v1 as components  # Import Streamlit Components for HTML5


# page config and sidebar declares up front allow all other functions to see global class variables
st.set_page_config(page_title="AI Human Body - Homunculus Body Reasoner", layout="wide")
should_save = st.sidebar.checkbox("πŸ’Ύ Save", value=True)
col1, col2, col3, col4 = st.columns(4)
with col1:
    with st.expander("Settings πŸ§ πŸ’Ύ", expanded=True):
        # File type for output, model choice
        menu = ["txt", "htm", "xlsx", "csv", "md", "py"]
        choice = st.sidebar.selectbox("Output File Type:", menu)
        model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301'))

        
# Define a context dictionary to maintain the state between exec calls
context = {}

def SpeechSynthesis(result):
    documentHTML5='''
    <!DOCTYPE html>
    <html>
    <head>
        <title>Read It Aloud</title>
        <script type="text/javascript">
            function readAloud() {
                const text = document.getElementById("textArea").value;
                const speech = new SpeechSynthesisUtterance(text);
                window.speechSynthesis.speak(speech);
            }
        </script>
    </head>
    <body>
        <h1>πŸ”Š Read It Aloud</h1>
        <textarea id="textArea" rows="10" cols="80">
    '''
    documentHTML5 = documentHTML5 + result
    documentHTML5 = documentHTML5 + '''
        </textarea>
        <br>
        <button onclick="readAloud()">πŸ”Š Read Aloud</button>
    </body>
    </html>
    '''

    components.html(documentHTML5, width=1280, height=1024)
    #return result




def create_file(filename, prompt, response, should_save=True):
    if not should_save:
        return

    # Extract base filename without extension
    base_filename, ext = os.path.splitext(filename)

    # Initialize the combined content
    combined_content = ""

    # Add Prompt with markdown title and emoji
    combined_content += "# Prompt πŸ“\n" + prompt + "\n\n"

    # Add Response with markdown title and emoji
    combined_content += "# Response πŸ’¬\n" + response + "\n\n"

    # Check for code blocks in the response
    resources = re.findall(r"```([\s\S]*?)```", response)
    for resource in resources:
        # Check if the resource contains Python code
        if "python" in resource.lower():
            # Remove the 'python' keyword from the code block
            cleaned_code = re.sub(r'^\s*python', '', resource, flags=re.IGNORECASE | re.MULTILINE)
            
            # Add Code Results title with markdown and emoji
            combined_content += "# Code Results πŸš€\n"

            # Redirect standard output to capture it
            original_stdout = sys.stdout
            sys.stdout = io.StringIO()
            
            # Execute the cleaned Python code within the context
            try:
                exec(cleaned_code, context)
                code_output = sys.stdout.getvalue()
                combined_content += f"```\n{code_output}\n```\n\n"
                realtimeEvalResponse = "# Code Results πŸš€\n" + "```" + code_output + "```\n\n"
                st.write(realtimeEvalResponse)
                
            except Exception as e:
                combined_content += f"```python\nError executing Python code: {e}\n```\n\n"
            
            # Restore the original standard output
            sys.stdout = original_stdout
        else:
            # Add non-Python resources with markdown and emoji
            combined_content += "# Resource πŸ› οΈ\n" + "```" + resource + "```\n\n"

    # Save the combined content to a Markdown file
    if should_save:
        with open(f"{base_filename}.md", 'w') as file:
            file.write(combined_content)


# Read it aloud        
def readitaloud(result):
    documentHTML5='''
    <!DOCTYPE html>
    <html>
    <head>
        <title>Read It Aloud</title>
        <script type="text/javascript">
            function readAloud() {
                const text = document.getElementById("textArea").value;
                const speech = new SpeechSynthesisUtterance(text);
                window.speechSynthesis.speak(speech);
            }
        </script>
    </head>
    <body>
        <h1>πŸ”Š Read It Aloud</h1>
        <textarea id="textArea" rows="10" cols="80">
    '''
    documentHTML5 = documentHTML5 + result
    documentHTML5 = documentHTML5 + '''
        </textarea>
        <br>
        <button onclick="readAloud()">πŸ”Š Read Aloud</button>
    </body>
    </html>
    '''

    components.html(documentHTML5, width=800, height=300)
    #return result

def generate_filename(prompt, file_type):
    central = pytz.timezone('US/Central')
    safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
    replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
    safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90]
    return f"{safe_date_time}_{safe_prompt}.{file_type}"



# 3. Stream Llama Response
# @st.cache_resource
def StreamLLMChatResponse(prompt):

    # My Inference API Copy
    API_URL = 'https://qe55p8afio98s0u3.us-east-1.aws.endpoints.huggingface.cloud'  # Dr Llama
    API_KEY = os.getenv('API_KEY')

    #try:
    endpoint_url = API_URL
    hf_token = API_KEY
    client = InferenceClient(endpoint_url, token=hf_token)
    gen_kwargs = dict(
        max_new_tokens=512,
        top_k=30,
        top_p=0.9,
        temperature=0.2,
        repetition_penalty=1.02,
        stop_sequences=["\nUser:", "<|endoftext|>", "</s>"],
    )
    stream = client.text_generation(prompt, stream=True, details=True, **gen_kwargs)
    report=[]
    res_box = st.empty()
    collected_chunks=[]
    collected_messages=[]
    allresults=''
    for r in stream:
        if r.token.special:
            continue
        if r.token.text in gen_kwargs["stop_sequences"]:
            break
        collected_chunks.append(r.token.text)
        chunk_message = r.token.text
        collected_messages.append(chunk_message)
        #try:
        report.append(r.token.text)
        if len(r.token.text) > 0:
            result="".join(report).strip()
            res_box.markdown(f'*{result}*')
            
        #except:
            #st.write('Stream llm issue')
    SpeechSynthesis(result)
    return result
    #except:
        #st.write('Llama model is asleep. Starting up now on A10 - please give 5 minutes then retry as KEDA scales up from zero to activate running container(s).')


    
# Chat and Chat with files
def chat_with_model(prompt, document_section, model_choice='gpt-3.5-turbo'):
    model = model_choice
    conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
    conversation.append({'role': 'user', 'content': prompt})
    if len(document_section)>0:
        conversation.append({'role': 'assistant', 'content': document_section})
    start_time = time.time()
    report = []
    res_box = st.empty()
    collected_chunks = []
    collected_messages = []
    key = os.getenv('OPENAI_API_KEY')
    openai.api_key = key
    
    for chunk in openai.ChatCompletion.create(
        model='gpt-3.5-turbo',
        messages=conversation,
        temperature=0.5,
        stream=True  
    ):
        collected_chunks.append(chunk)  # save the event response
        chunk_message = chunk['choices'][0]['delta']  # extract the message
        collected_messages.append(chunk_message)  # save the message
        content=chunk["choices"][0].get("delta",{}).get("content")
        try:
            report.append(content)
            if len(content) > 0:
                result = "".join(report).strip()
                res_box.markdown(f'*{result}*') 
        except:
            st.write(' ')
            
    full_reply_content = ''.join([m.get('content', '') for m in collected_messages])
    st.write("Elapsed time:")
    st.write(time.time() - start_time)
    readitaloud(full_reply_content)
    filename = generate_filename(full_reply_content, choice)
    create_file(filename, prompt, full_reply_content, should_save)
    return full_reply_content

def chat_with_file_contents(prompt, file_content, model_choice='gpt-3.5-turbo'):
    conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
    conversation.append({'role': 'user', 'content': prompt})
    if len(file_content)>0:
        conversation.append({'role': 'assistant', 'content': file_content})
    response = openai.ChatCompletion.create(model=model_choice, messages=conversation)
    return response['choices'][0]['message']['content']


def link_button_with_emoji(url, title, emoji_summary):
    emojis = ["πŸ’‰", "πŸ₯", "🌑️", "🩺", "πŸ”¬", "πŸ’Š", "πŸ§ͺ", "πŸ‘¨β€βš•οΈ", "πŸ‘©β€βš•οΈ"]
    random_emoji = random.choice(emojis)
    st.markdown(f"[{random_emoji} {emoji_summary} - {title}]({url})")

# Homunculus parts and their corresponding emojis
homunculus_parts = {
    "Head": "🧠", "Brain": "🧠", "Left Eye": "πŸ‘οΈ", "Right Eye": "πŸ‘οΈ", 
    "Left Eyebrow": "🀨", "Right Eyebrow": "🀨", "Nose": "πŸ‘ƒ", 
    "Mouth": "πŸ‘„", "Neck": "🧣", "Left Shoulder": "πŸ’ͺ", 
    "Right Shoulder": "πŸ’ͺ", "Left Upper Arm": "πŸ’ͺ", 
    "Right Upper Arm": "πŸ’ͺ", "Left Elbow": "πŸ’ͺ", 
    "Right Elbow": "πŸ’ͺ", "Left Forearm": "πŸ’ͺ", 
    "Right Forearm": "πŸ’ͺ", "Left Wrist": "✊", 
    "Right Wrist": "✊", "Left Hand": "🀲", 
    "Right Hand": "🀲", "Chest": "πŸ‘•", 
    "Abdomen": "πŸ‘•", "Pelvis": "🩲", 
    "Left Hip": "🦡", "Right Hip": "🦡", 
    "Left Thigh": "🦡", "Right Thigh": "🦡", 
    "Left Knee": "🦡", "Right Knee": "🦡", 
    "Left Shin": "🦡", "Right Shin": "🦡"
}
homunculus_parts_extended = {
    "Head": "🧠 (Center of Thought and Control)", 
    "Brain": "🧠 (Organ of Intelligence and Processing)", 
    "Left Eye": "πŸ‘οΈ (Vision and Perception - Left)", 
    "Right Eye": "πŸ‘οΈ (Vision and Perception - Right)", 
    "Left Eyebrow": "🀨 (Facial Expression - Left Eyebrow)", 
    "Right Eyebrow": "🀨 (Facial Expression - Right Eyebrow)", 
    "Nose": "πŸ‘ƒ (Smell and Breathing)", 
    "Mouth": "πŸ‘„ (Speech and Eating)", 
    "Neck": "🧣 (Support and Movement of Head)", 
    "Left Shoulder": "πŸ’ͺ (Arm Movement and Strength - Left)", 
    "Right Shoulder": "πŸ’ͺ (Arm Movement and Strength - Right)", 
    "Left Upper Arm": "πŸ’ͺ (Support and Lifting - Left Upper)", 
    "Right Upper Arm": "πŸ’ͺ (Support and Lifting - Right Upper)", 
    "Left Elbow": "πŸ’ͺ (Arm Bending and Flexing - Left)", 
    "Right Elbow": "πŸ’ͺ (Arm Bending and Flexing - Right)", 
    "Left Forearm": "πŸ’ͺ (Wrist and Hand Movement - Left)", 
    "Right Forearm": "πŸ’ͺ (Wrist and Hand Movement - Right)", 
    "Left Wrist": "✊ (Hand Articulation and Rotation - Left)", 
    "Right Wrist": "✊ (Hand Articulation and Rotation - Right)", 
    "Left Hand": "🀲 (Grasping and Touch - Left)", 
    "Right Hand": "🀲 (Grasping and Touch - Right)", 
    "Chest": "πŸ‘• (Protection of Heart and Lungs)", 
    "Abdomen": "πŸ‘• (Digestive Organs and Processing)", 
    "Pelvis": "🩲 (Support for Lower Limbs and Organs)", 
    "Left Hip": "🦡 (Support and Movement - Left Hip)", 
    "Right Hip": "🦡 (Support and Movement - Right Hip)", 
    "Left Thigh": "🦡 (Support and Movement - Left Thigh)", 
    "Right Thigh": "🦡 (Support and Movement - Right Thigh)", 
    "Left Knee": "🦡 (Leg Bending and Flexing - Left)", 
    "Right Knee": "🦡 (Leg Bending and Flexing - Right)", 
    "Left Shin": "🦡 (Lower Leg Support - Left)", 
    "Right Shin": "🦡 (Lower Leg Support - Right)",
    "Left Foot": "🦢 (Support, Balance, and Locomotion - Left)", 
    "Right Foot": "🦢 (Support, Balance, and Locomotion - Right)"
}

# Function to display the homunculus parts with expanders and chat buttons
def display_homunculus_parts():
    st.title("Homunculus Model")
    
    with st.expander(f"Head ({homunculus_parts_extended['Head']})", expanded=False):
        head_parts = ["Left Eye", "Right Eye", "Left Eyebrow", "Right Eyebrow", "Nose", "Mouth"]
        for part in head_parts:
            # Extracting the function/description from the extended dictionary
            part_description = homunculus_parts_extended[part].split('(')[1].rstrip(')')
            prompt = f"Learn about the key features and functions of the {part} - {part_description}"
            if st.button(f"Explore {part}", key=part):
                #response = chat_with_model(prompt, part) # GPT
                response = StreamLLMChatResponse(prompt) # Llama

    with st.expander(f"Brain ({homunculus_parts['Brain']})", expanded=False):
        brain_parts = {
            "Neocortex": "πŸŒ€ - Involved in higher-order brain functions such as sensory perception, cognition, and spatial reasoning.",
            "Limbic System": "❀️ - Supports functions including emotion, behavior, motivation, long-term memory, and olfaction.",
            "Brainstem": "🌱 - Controls basic body functions like breathing, swallowing, heart rate, blood pressure, and consciousness.",
            "Cerebellum": "🧩 - Coordinates voluntary movements like posture, balance, and speech, resulting in smooth muscular activity.",
            "Thalamus": "πŸ”” - Channels sensory and motor signals to the cerebral cortex, and regulates consciousness and sleep.",
            "Hypothalamus": "🌑️ - Controls body temperature, hunger, thirst, fatigue, and circadian cycles.",
            "Hippocampus": "🐚 - Essential for the formation of new memories and associated with learning and emotions.",
            "Frontal Lobe": "πŸ’‘ - Associated with decision making, problem solving, and planning.",
            "Parietal Lobe": "🀚 - Processes sensory information it receives from the outside world, mainly relating to spatial sense and navigation.",
            "Temporal Lobe": "πŸ‘‚ - Involved in processing auditory information and is also important for the processing of semantics in both speech and vision.",
            "Occipital Lobe": "πŸ‘οΈ - Main center for visual processing."
        }
    
        for part, description in brain_parts.items():
            # Formatting the prompt in markdown style for enhanced learning
            prompt = f"Create a markdown outline with emojis to explain the {part} and its role in the brain: {description}"
            if st.button(f"Explore {part} 🧠", key=part):
                #response = chat_with_model(prompt, part)
                response = StreamLLMChatResponse(prompt) # Llama

    # Displaying central body parts
    central_parts = ["Neck", "Chest", "Abdomen", "Pelvis"]
    for part in central_parts:
        with st.expander(f"{part} ({homunculus_parts_extended[part]})", expanded=False):
            prompt = f"Learn about the key features and functions of the {part} - {homunculus_parts_extended[part].split(' ')[-1]}"
            if st.button(f"Explore {part} 🧣", key=part):
                #response = chat_with_model(prompt, part)
                response = StreamLLMChatResponse(prompt) # Llama

                
    # Displaying symmetric body parts
    symmetric_parts = ["Shoulder", "Upper Arm", "Elbow", "Forearm", "Wrist", "Hand", "Hip", "Thigh", "Knee", "Shin", "Foot"]
    for part in symmetric_parts:
        col1, col2 = st.columns(2)
        with col1:
            with st.expander(f"Left {part} ({homunculus_parts_extended[f'Left {part}']})", expanded=False):
                prompt = f"Learn about the key features and functions of the Left {part} - {homunculus_parts_extended[f'Left {part}'].split(' ')[-1]}"
                if st.button(f"Explore Left {part} πŸ’ͺ", key=f"Left {part}"):
                    #response = chat_with_model(prompt, f"Left {part}")
                    response = StreamLLMChatResponse(prompt) # Llama

        with col2:
            with st.expander(f"Right {part} ({homunculus_parts_extended[f'Right {part}']})", expanded=False):
                prompt = f"Learn about the key features and functions of the Right {part} - {homunculus_parts_extended[f'Right {part}'].split(' ')[-1]}"
                if st.button(f"Explore Right {part} πŸ’ͺ", key=f"Right {part}"):
                    #response = chat_with_model(prompt, f"Right {part}")
                    response = StreamLLMChatResponse(prompt) # Llama


# Define function to add paper buttons and links
def add_paper_buttons_and_links():

    # Homunculus
    page = st.sidebar.radio("Choose a page:", ["Detailed Homunculus Model"])
    if page == "Detailed Homunculus Model":
        display_homunculus_parts()

    col1, col2, col3, col4 = st.columns(4)

    with col1:
        with st.expander("MemGPT πŸ§ πŸ’Ύ", expanded=False):
            link_button_with_emoji("https://arxiv.org/abs/2310.08560", "MemGPT", "πŸ§ πŸ’Ύ Memory OS")
            outline_memgpt = "Memory Hierarchy, Context Paging, Self-directed Memory Updates, Memory Editing, Memory Retrieval, Preprompt Instructions, Semantic Memory, Episodic Memory, Emotional Contextual Understanding"
            if st.button("Discuss MemGPT Features"):
                prompt = "Discuss the key features of MemGPT: " + outline_memgpt
                #chat_with_model(prompt, "MemGPT")
                response = StreamLLMChatResponse(prompt) # Llama

    with col2:
        with st.expander("AutoGen πŸ€–πŸ”—", expanded=False):
            link_button_with_emoji("https://arxiv.org/abs/2308.08155", "AutoGen", "πŸ€–πŸ”— Multi-Agent LLM")
            outline_autogen = "Cooperative Conversations, Combining Capabilities, Complex Task Solving, Divergent Thinking, Factuality, Highly Capable Agents, Generic Abstraction, Effective Implementation"
            if st.button("Explore AutoGen Multi-Agent LLM"):
                prompt = "Explore the key features of AutoGen: " + outline_autogen
                #chat_with_model(prompt, "AutoGen")
                response = StreamLLMChatResponse(prompt) # Llama

    with col3:
        with st.expander("Whisper πŸ”ŠπŸ§‘β€πŸš€", expanded=False):
            link_button_with_emoji("https://arxiv.org/abs/2212.04356", "Whisper", "πŸ”ŠπŸ§‘β€πŸš€ Robust STT")
            outline_whisper = "Scaling, Deep Learning Approaches, Weak Supervision, Zero-shot Transfer Learning, Accuracy & Robustness, Pre-training Techniques, Broad Range of Environments, Combining Multiple Datasets"
            if st.button("Learn About Whisper STT"):
                prompt = "Learn about the key features of Whisper: " + outline_whisper
                #chat_with_model(prompt, "Whisper")
                response = StreamLLMChatResponse(prompt) # Llama

    with col4:
        with st.expander("ChatDev πŸ’¬πŸ’»", expanded=False):
            link_button_with_emoji("https://arxiv.org/pdf/2307.07924.pdf", "ChatDev", "πŸ’¬πŸ’» Comm. Agents")
            outline_chatdev = "Effective Communication, Comprehensive Software Solutions, Diverse Social Identities, Tailored Codes, Environment Dependencies, User Manuals"
            if st.button("Deep Dive into ChatDev"):
                prompt = "Deep dive into the features of ChatDev: " + outline_chatdev
                #chat_with_model(prompt, "ChatDev")
                response = StreamLLMChatResponse(prompt) # Llama

add_paper_buttons_and_links()


# Process user input is a post processor algorithm which runs after document embedding vector DB play of GPT on context of documents..
def process_user_input(user_question):
    # Check and initialize 'conversation' in session state if not present
    if 'conversation' not in st.session_state:
        st.session_state.conversation = {}  # Initialize with an empty dictionary or an appropriate default value

    response = st.session_state.conversation({'question': user_question})
    st.session_state.chat_history = response['chat_history']

    for i, message in enumerate(st.session_state.chat_history):
        template = user_template if i % 2 == 0 else bot_template
        st.write(template.replace("{{MSG}}", message.content), unsafe_allow_html=True)

        # Save file output from PDF query results
        filename = generate_filename(user_question, 'txt')
        create_file(filename, user_question, message.content, should_save)

        # New functionality to create expanders and buttons
        create_expanders_and_buttons(message.content)

def create_expanders_and_buttons(content):
    # Split the content into paragraphs
    paragraphs = content.split("\n\n")
    for paragraph in paragraphs:
        # Identify the header and detail in the paragraph
        header, detail = extract_feature_and_detail(paragraph)
        if header and detail:
            with st.expander(header, expanded=False):
                if st.button(f"Explore {header}"):
                    expanded_outline = "Expand on the feature: " + detail
                    #chat_with_model(expanded_outline, header)
                    response = StreamLLMChatResponse(expanded_outline) # Llama

def extract_feature_and_detail(paragraph):
    # Use regex to find the header and detail in the paragraph
    match = re.match(r"(.*?):(.*)", paragraph)
    if match:
        header = match.group(1).strip()
        detail = match.group(2).strip()
        return header, detail
    return None, None

def transcribe_audio(file_path, model):
    key = os.getenv('OPENAI_API_KEY')
    headers = {
        "Authorization": f"Bearer {key}",
    }
    with open(file_path, 'rb') as f:
        data = {'file': f}
        st.write("Read file {file_path}", file_path)
        OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions"
        response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model})
    if response.status_code == 200:
        st.write(response.json())
        prompt = response.json().get('text')
        chatResponse = chat_with_model(prompt, '') # *************************************
        response = StreamLLMChatResponse(prompt) # Llama

        transcript = response.json().get('text')
        #st.write('Responses:')
        #st.write(chatResponse)
        filename = generate_filename(transcript, 'txt')
        #create_file(filename, transcript, chatResponse)
        response = chatResponse
        user_prompt = transcript
        create_file(filename, user_prompt, response, should_save)
        return transcript
    else:
        st.write(response.json())
        st.error("Error in API call.")
        return None

def save_and_play_audio(audio_recorder):
    audio_bytes = audio_recorder()
    if audio_bytes:
        filename = generate_filename("Recording", "wav")
        with open(filename, 'wb') as f:
            f.write(audio_bytes)
        st.audio(audio_bytes, format="audio/wav")
        return filename
    return None



def truncate_document(document, length):
    return document[:length]

def divide_document(document, max_length):
    return [document[i:i+max_length] for i in range(0, len(document), max_length)]

def get_table_download_link(file_path):
    with open(file_path, 'r') as file:
        try:
            data = file.read()
        except:
            st.write('')
            return file_path    
    b64 = base64.b64encode(data.encode()).decode()  
    file_name = os.path.basename(file_path)
    ext = os.path.splitext(file_name)[1]  # get the file extension
    if ext == '.txt':
        mime_type = 'text/plain'
    elif ext == '.py':
        mime_type = 'text/plain'
    elif ext == '.xlsx':
        mime_type = 'text/plain'
    elif ext == '.csv':
        mime_type = 'text/plain'
    elif ext == '.htm':
        mime_type = 'text/html'
    elif ext == '.md':
        mime_type = 'text/markdown'
    else:
        mime_type = 'application/octet-stream'  # general binary data type
    href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
    return href

def CompressXML(xml_text):
    root = ET.fromstring(xml_text)
    for elem in list(root.iter()):
        if isinstance(elem.tag, str) and 'Comment' in elem.tag:
            elem.parent.remove(elem)
    return ET.tostring(root, encoding='unicode', method="xml")
    
def read_file_content(file,max_length):
    if file.type == "application/json":
        content = json.load(file)
        return str(content)
    elif file.type == "text/html" or file.type == "text/htm":
        content = BeautifulSoup(file, "html.parser")
        return content.text
    elif file.type == "application/xml" or file.type == "text/xml":
        tree = ET.parse(file)
        root = tree.getroot()
        xml = CompressXML(ET.tostring(root, encoding='unicode'))
        return xml
    elif file.type == "text/markdown" or file.type == "text/md":
        md = mistune.create_markdown()
        content = md(file.read().decode())
        return content
    elif file.type == "text/plain":
        return file.getvalue().decode()
    else:
        return ""

def extract_mime_type(file):
    # Check if the input is a string
    if isinstance(file, str):
        pattern = r"type='(.*?)'"
        match = re.search(pattern, file)
        if match:
            return match.group(1)
        else:
            raise ValueError(f"Unable to extract MIME type from {file}")
    # If it's not a string, assume it's a streamlit.UploadedFile object
    elif isinstance(file, streamlit.UploadedFile):
        return file.type
    else:
        raise TypeError("Input should be a string or a streamlit.UploadedFile object")



def extract_file_extension(file):
    # get the file name directly from the UploadedFile object
    file_name = file.name
    pattern = r".*?\.(.*?)$"
    match = re.search(pattern, file_name)
    if match:
        return match.group(1)
    else:
        raise ValueError(f"Unable to extract file extension from {file_name}")

def pdf2txt(docs):
    text = ""
    for file in docs:
        file_extension = extract_file_extension(file)
        # print the file extension
        st.write(f"File type extension: {file_extension}")

        # read the file according to its extension
        try:
            if file_extension.lower() in ['py', 'txt', 'html', 'htm', 'xml', 'json']:
                text += file.getvalue().decode('utf-8')
            elif file_extension.lower() == 'pdf':
                from PyPDF2 import PdfReader
                pdf = PdfReader(BytesIO(file.getvalue()))
                for page in range(len(pdf.pages)):
                    text += pdf.pages[page].extract_text() # new PyPDF2 syntax
        except Exception as e:
            st.write(f"Error processing file {file.name}: {e}")
    return text

def txt2chunks(text):
    text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len)
    return text_splitter.split_text(text)

def vector_store(text_chunks):
    key = os.getenv('OPENAI_API_KEY')
    embeddings = OpenAIEmbeddings(openai_api_key=key)
    return FAISS.from_texts(texts=text_chunks, embedding=embeddings)

def get_chain(vectorstore):
    llm = ChatOpenAI()
    memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
    return ConversationalRetrievalChain.from_llm(llm=llm, retriever=vectorstore.as_retriever(), memory=memory)

def divide_prompt(prompt, max_length):
    words = prompt.split()
    chunks = []
    current_chunk = []
    current_length = 0
    for word in words:
        if len(word) + current_length <= max_length:
            current_length += len(word) + 1  # Adding 1 to account for spaces
            current_chunk.append(word)
        else:
            chunks.append(' '.join(current_chunk))
            current_chunk = [word]
            current_length = len(word)
    chunks.append(' '.join(current_chunk))  # Append the final chunk
    return chunks

def create_zip_of_files(files):
    """
    Create a zip file from a list of files.
    """
    zip_name = "all_files.zip"
    with zipfile.ZipFile(zip_name, 'w') as zipf:
        for file in files:
            zipf.write(file)
    return zip_name


def get_zip_download_link(zip_file):
    """
    Generate a link to download the zip file.
    """
    with open(zip_file, 'rb') as f:
        data = f.read()
    b64 = base64.b64encode(data).decode()
    href = f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>'
    return href

    
def main():

    # Audio, transcribe, GPT:
    filename = save_and_play_audio(audio_recorder)

    if filename is not None:
        try:
            transcription = transcribe_audio(filename, "whisper-1")
        except:
            st.write(' ')
        st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
        filename = None

    # prompt interfaces
    user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100)

    # file section interface for prompts against large documents as context
    collength, colupload = st.columns([2,3])  # adjust the ratio as needed
    with collength:
        max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000)
    with colupload:
        uploaded_file = st.file_uploader("Add a file for context:", type=["pdf", "xml", "json", "xlsx", "csv", "html", "htm", "md", "txt"])


    # Document section chat
        
    document_sections = deque()
    document_responses = {}
    if uploaded_file is not None:
        file_content = read_file_content(uploaded_file, max_length)
        document_sections.extend(divide_document(file_content, max_length))
    if len(document_sections) > 0:
        if st.button("πŸ‘οΈ View Upload"):
            st.markdown("**Sections of the uploaded file:**")
            for i, section in enumerate(list(document_sections)):
                st.markdown(f"**Section {i+1}**\n{section}")
        st.markdown("**Chat with the model:**")
        for i, section in enumerate(list(document_sections)):
            if i in document_responses:
                st.markdown(f"**Section {i+1}**\n{document_responses[i]}")
            else:
                if st.button(f"Chat about Section {i+1}"):
                    st.write('Reasoning with your inputs...')
                    #response = chat_with_model(user_prompt, section, model_choice)
                    response = StreamLLMChatResponse(user_prompt + ' ' + section) # Llama

                    st.write('Response:')
                    st.write(response)
                    document_responses[i] = response
                    filename = generate_filename(f"{user_prompt}_section_{i+1}", choice)
                    create_file(filename, user_prompt, response, should_save)
                    st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)

    if st.button('πŸ’¬ Chat'):
        st.write('Reasoning with your inputs...')
        
        # Divide the user_prompt into smaller sections
        user_prompt_sections = divide_prompt(user_prompt, max_length)
        full_response = ''
        for prompt_section in user_prompt_sections:
            # Process each section with the model
            #response = chat_with_model(prompt_section, ''.join(list(document_sections)), model_choice)
            response = StreamLLMChatResponse(prompt_section + ''.join(list(document_sections))) # Llama
            full_response += response + '\n'  # Combine the responses
        response = full_response
        st.write('Response:')
        st.write(response)
        filename = generate_filename(user_prompt, choice)
        create_file(filename, user_prompt, response, should_save)
        st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)

    all_files = glob.glob("*.*")
    all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 20]  # exclude files with short names
    all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True)  # sort by file type and file name in descending order


    # Sidebar buttons Download All and Delete All
    colDownloadAll, colDeleteAll = st.sidebar.columns([3,3])
    with colDownloadAll:
        if st.button("⬇️ Download All"):
            zip_file = create_zip_of_files(all_files)
            st.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True)
    with colDeleteAll:
        if st.button("πŸ—‘ Delete All"):
            for file in all_files:
                os.remove(file)
            st.experimental_rerun()
        
    # Sidebar of Files Saving History and surfacing files as context of prompts and responses
    file_contents=''
    next_action=''
    for file in all_files:
        col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1])  # adjust the ratio as needed
        with col1:
            if st.button("🌐", key="md_"+file):  # md emoji button
                with open(file, 'r') as f:
                    file_contents = f.read()
                    next_action='md'
        with col2:
            st.markdown(get_table_download_link(file), unsafe_allow_html=True)
        with col3:
            if st.button("πŸ“‚", key="open_"+file):  # open emoji button
                with open(file, 'r') as f:
                    file_contents = f.read()
                    next_action='open'
        with col4:
            if st.button("πŸ”", key="read_"+file):  # search emoji button
                with open(file, 'r') as f:
                    file_contents = f.read()
                    next_action='search'
        with col5:
            if st.button("πŸ—‘", key="delete_"+file):
                os.remove(file)
                st.experimental_rerun()
                
    if len(file_contents) > 0:
        if next_action=='open':
            file_content_area = st.text_area("File Contents:", file_contents, height=500)
        if next_action=='md':
            st.markdown(file_contents)
        if next_action=='search':
            file_content_area = st.text_area("File Contents:", file_contents, height=500)
            st.write('Reasoning with your inputs...')
            #response = chat_with_model(user_prompt, file_contents, model_choice)
            response = StreamLLMChatResponse(user_prompt + ' ' + file_contents) # Llama

            filename = generate_filename(file_contents, choice)
            create_file(filename, user_prompt, response, should_save)

            st.experimental_rerun()
                
if __name__ == "__main__":
    main()

load_dotenv()
st.write(css, unsafe_allow_html=True)

st.header("Chat with documents :books:")
user_question = st.text_input("Ask a question about your documents:")
if user_question:
    process_user_input(user_question)

with st.sidebar:
    st.subheader("Your documents")
    docs = st.file_uploader("import documents", accept_multiple_files=True)
    with st.spinner("Processing"):
        raw = pdf2txt(docs)
        if len(raw) > 0:
            length = str(len(raw))
            text_chunks = txt2chunks(raw)
            vectorstore = vector_store(text_chunks)
            st.session_state.conversation = get_chain(vectorstore)
            st.markdown('# AI Search Index of Length:' + length + ' Created.')  # add timing
            filename = generate_filename(raw, 'txt')
            create_file(filename, raw, '', should_save)