File size: 10,425 Bytes
6b0cb22 438f1e5 c243550 438f1e5 c243550 438f1e5 c243550 438f1e5 c243550 438f1e5 c243550 438f1e5 c243550 438f1e5 c243550 438f1e5 c243550 438f1e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
---
title: README
emoji: π»
colorFrom: yellow
colorTo: pink
sdk: static
pinned: false
---
<div align="center">
<img src="https://user-images.githubusercontent.com/16392542/77208906-224aa500-6aba-11ea-96bd-e81806074030.png" width="350">
<h2>AutoML for Image, Text, Time Series, and Tabular Data</h2>
<div style="width: max-content; margin: 0 auto; max-width: 90%;">
<p style="display: flex; flex-wrap: wrap; gap: 10px; padding: 0; line-height: 1.1; justify-content: center;">
<a rel="nofollow" style="display: inline-block;" href="https://github.com/autogluon/autogluon/releases">
<img style="margin: 10px 0" alt="Latest Release" src="https://img.shields.io/github/v/release/autogluon/autogluon">
</a>
<a rel="nofollow" style="display: inline-block;" href="https://anaconda.org/conda-forge/autogluon">
<img style="margin: 10px 0" alt="Conda Forge" src="https://img.shields.io/conda/vn/conda-forge/autogluon.svg">
</a>
<a rel="nofollow" style="display: inline-block;" href="https://pypi.org/project/autogluon/">
<img style="margin: 10px 0" alt="Python Versions" src="https://img.shields.io/badge/python-3.8%20%7C%203.9%20%7C%203.10%20%7C%203.11-blue">
</a>
<a rel="nofollow" style="display: inline-block;" href="https://pepy.tech/project/autogluon">
<img style="margin: 10px 0" alt="Downloads" src="https://pepy.tech/badge/autogluon/month">
</a>
<a rel="nofollow" style="display: inline-block;" href="https://github.com/autogluon/autogluon/blob/master/LICENSE">
<img style="margin: 10px 0" alt="GitHub license" src="https://img.shields.io/badge/License-Apache_2.0-blue.svg">
</a>
<a rel="nofollow" style="display: inline-block;" href="https://discord.gg/wjUmjqAc2N">
<img style="margin: 10px 0" alt="Discord" src="https://img.shields.io/discord/1043248669505368144?logo=discord&style=flat">
</a>
<a rel="nofollow" style="display: inline-block;" href="https://x.com/autogluon">
<img style="margin: 10px 0" alt="Twitter" src="https://img.shields.io/twitter/follow/autogluon?style=social">
</a>
</p>
</div>
[Install Instructions](https://auto.gluon.ai/stable/install.html) | [Documentation](https://auto.gluon.ai/stable/index.html) | [Release Notes](https://auto.gluon.ai/stable/whats_new/index.html)
</div>
AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.
## πΎ Installation
AutoGluon is supported on Python 3.8 - 3.11 and is available on Linux, MacOS, and Windows.
You can install AutoGluon with:
```python
pip install autogluon
```
Visit our [Installation Guide](https://auto.gluon.ai/stable/install.html) for detailed instructions, including GPU support, Conda installs, and optional dependencies.
## β‘ Quickstart
Build accurate end-to-end ML models in just 3 lines of code!
```python
from autogluon.tabular import TabularPredictor
predictor = TabularPredictor(label="class").fit("train.csv")
predictions = predictor.predict("test.csv")
```
<table>
<thead>
<tr>
<th style="text-align: left">AutoGluon Task</th>
<th style="text-align: left">Quickstart</th>
<th style="text-align: left">API</th>
</tr>
</thead>
<tbody>
<tr>
<td>TabularPredictor</td>
<td>
<a href="https://auto.gluon.ai/stable/tutorials/tabular/tabular-quick-start.html">
<img style="margin: 0" alt="Quick Start" src="https://img.shields.io/static/v1?label=&message=tutorial&color=grey">
</a>
</td>
<td>
<a href="https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html">
<img style="margin: 0" alt="API" src="https://img.shields.io/badge/api-reference-blue.svg">
</a>
</td>
</tr>
<tr>
<td>TimeSeriesPredictor</td>
<td>
<a href="https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-quick-start.html">
<img style="margin: 0" alt="Quick Start" src="https://img.shields.io/static/v1?label=&message=tutorial&color=grey">
</a>
</td>
<td>
<a href="https://auto.gluon.ai/stable/api/autogluon.timeseries.TimeSeriesPredictor.html">
<img style="margin: 0" alt="API" src="https://img.shields.io/badge/api-reference-blue.svg">
</a>
</td>
</tr>
<tr>
<td>MultiModalPredictor</td>
<td>
<a href="https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html">
<img style="margin: 0" alt="Quick Start" src="https://img.shields.io/static/v1?label=&message=tutorial&color=grey">
</a>
</td>
<td>
<a href="https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html">
<img style="margin: 0" alt="API" src="https://img.shields.io/badge/api-reference-blue.svg">
</a>
</td>
</tr>
</tbody>
</table>
## π Resources
### Hands-on Tutorials / Talks
Below is a curated list of recent tutorials and talks on AutoGluon. A comprehensive list is available [here](AWESOME.md#videos--tutorials).
| Title | Format | Location | Date |
|--------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------|------------|
| πΊ [AutoGluon 1.0: Shattering the AutoML Ceiling with Zero Lines of Code](https://www.youtube.com/watch?v=5tvp_Ihgnuk) | Tutorial | [AutoML Conf 2023](https://2023.automl.cc/) | 2023/09/12 |
| π [AutoGluon: The Story](https://automlpodcast.com/episode/autogluon-the-story) | Podcast | [The AutoML Podcast](https://automlpodcast.com/) | 2023/09/05 |
| πΊ [AutoGluon: AutoML for Tabular, Multimodal, and Time Series Data](https://youtu.be/Lwu15m5mmbs?si=jSaFJDqkTU27C0fa) | Tutorial | PyData Berlin | 2023/06/20 |
| πΊ [Solving Complex ML Problems in a few Lines of Code with AutoGluon](https://www.youtube.com/watch?v=J1UQUCPB88I) | Tutorial | PyData Seattle | 2023/06/20 |
| πΊ [The AutoML Revolution](https://www.youtube.com/watch?v=VAAITEds-28) | Tutorial | [Fall AutoML School 2022](https://sites.google.com/view/automl-fall-school-2022) | 2022/10/18 |
### Scientific Publications
- [AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data](https://arxiv.org/pdf/2003.06505.pdf) (*Arxiv*, 2020) ([BibTeX](CITING.md#general-usage--autogluontabular))
- [Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation](https://proceedings.neurips.cc/paper/2020/hash/62d75fb2e3075506e8837d8f55021ab1-Abstract.html) (*NeurIPS*, 2020) ([BibTeX](CITING.md#tabular-distillation))
- [Benchmarking Multimodal AutoML for Tabular Data with Text Fields](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper-round2.pdf) (*NeurIPS*, 2021) ([BibTeX](CITING.md#autogluonmultimodal))
- [XTab: Cross-table Pretraining for Tabular Transformers](https://proceedings.mlr.press/v202/zhu23k/zhu23k.pdf) (*ICML*, 2023)
- [AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting](https://arxiv.org/abs/2308.05566) (*AutoML Conf*, 2023) ([BibTeX](CITING.md#autogluontimeseries))
- [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*Under Review*, 2024)
### Articles
- [AutoGluon-TimeSeries: Every Time Series Forecasting Model In One Library](https://towardsdatascience.com/autogluon-timeseries-every-time-series-forecasting-model-in-one-library-29a3bf6879db) (*Towards Data Science*, Jan 2024)
- [AutoGluon for tabular data: 3 lines of code to achieve top 1% in Kaggle competitions](https://aws.amazon.com/blogs/opensource/machine-learning-with-autogluon-an-open-source-automl-library/) (*AWS Open Source Blog*, Mar 2020)
- [AutoGluon overview & example applications](https://towardsdatascience.com/autogluon-deep-learning-automl-5cdb4e2388ec?source=friends_link&sk=e3d17d06880ac714e47f07f39178fdf2) (*Towards Data Science*, Dec 2019)
### Train/Deploy AutoGluon in the Cloud
- [AutoGluon Cloud](https://auto.gluon.ai/cloud/stable/index.html) (Recommended)
- [AutoGluon on SageMaker AutoPilot](https://auto.gluon.ai/stable/tutorials/cloud_fit_deploy/autopilot-autogluon.html)
- [AutoGluon on Amazon SageMaker](https://auto.gluon.ai/stable/tutorials/cloud_fit_deploy/cloud-aws-sagemaker-train-deploy.html)
- [AutoGluon Deep Learning Containers](https://github.com/aws/deep-learning-containers/blob/master/available_images.md#autogluon-training-containers) (Security certified & maintained by the AutoGluon developers)
- [AutoGluon Official Docker Container](https://hub.docker.com/r/autogluon/autogluon)
- [AutoGluon-Tabular on AWS Marketplace](https://aws.amazon.com/marketplace/pp/prodview-n4zf5pmjt7ism) (Not maintained by us)
## π Citing AutoGluon
If you use AutoGluon in a scientific publication, please refer to our [citation guide](CITING.md).
## π How to get involved
We are actively accepting code contributions to the AutoGluon project. If you are interested in contributing to AutoGluon, please read the [Contributing Guide](https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md) to get started.
## ποΈ License
This library is licensed under the Apache 2.0 License.
|