File size: 10,425 Bytes
6b0cb22
 
 
 
 
 
 
 
 
438f1e5
 
 
 
 
c243550
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
438f1e5
 
 
 
 
c243550
 
 
438f1e5
 
 
 
 
 
 
 
 
 
 
 
c243550
438f1e5
 
 
 
 
 
 
 
 
c243550
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
438f1e5
 
 
 
 
 
 
c243550
 
 
 
 
438f1e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c243550
438f1e5
 
 
c243550
438f1e5
 
 
c243550
438f1e5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
---
title: README
emoji: πŸ’»
colorFrom: yellow
colorTo: pink
sdk: static
pinned: false
---



<div align="center">
<img src="https://user-images.githubusercontent.com/16392542/77208906-224aa500-6aba-11ea-96bd-e81806074030.png" width="350">

<h2>AutoML for Image, Text, Time Series, and Tabular Data</h2>


<div style="width: max-content; margin: 0 auto; max-width: 90%;">
    <p style="display: flex; flex-wrap: wrap; gap: 10px; padding: 0; line-height: 1.1; justify-content: center;">
        <a rel="nofollow" style="display: inline-block;" href="https://github.com/autogluon/autogluon/releases">
            <img style="margin: 10px 0" alt="Latest Release" src="https://img.shields.io/github/v/release/autogluon/autogluon">
        </a>
        <a rel="nofollow" style="display: inline-block;" href="https://anaconda.org/conda-forge/autogluon">
            <img style="margin: 10px 0" alt="Conda Forge" src="https://img.shields.io/conda/vn/conda-forge/autogluon.svg">
        </a>
        <a rel="nofollow" style="display: inline-block;" href="https://pypi.org/project/autogluon/">
            <img style="margin: 10px 0" alt="Python Versions" src="https://img.shields.io/badge/python-3.8%20%7C%203.9%20%7C%203.10%20%7C%203.11-blue">
        </a>
        <a rel="nofollow" style="display: inline-block;" href="https://pepy.tech/project/autogluon">
            <img style="margin: 10px 0" alt="Downloads" src="https://pepy.tech/badge/autogluon/month">
        </a>
        <a rel="nofollow" style="display: inline-block;" href="https://github.com/autogluon/autogluon/blob/master/LICENSE">
            <img style="margin: 10px 0" alt="GitHub license" src="https://img.shields.io/badge/License-Apache_2.0-blue.svg">
        </a>
        <a rel="nofollow" style="display: inline-block;" href="https://discord.gg/wjUmjqAc2N">
            <img style="margin: 10px 0" alt="Discord" src="https://img.shields.io/discord/1043248669505368144?logo=discord&amp;style=flat">
        </a>
        <a rel="nofollow" style="display: inline-block;" href="https://x.com/autogluon">
            <img style="margin: 10px 0" alt="Twitter" src="https://img.shields.io/twitter/follow/autogluon?style=social">
        </a>
    </p>
</div>
    

[Install Instructions](https://auto.gluon.ai/stable/install.html) | [Documentation](https://auto.gluon.ai/stable/index.html) | [Release Notes](https://auto.gluon.ai/stable/whats_new/index.html)

</div>


AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications.  With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.

## πŸ’Ύ Installation

AutoGluon is supported on Python 3.8 - 3.11 and is available on Linux, MacOS, and Windows.

You can install AutoGluon with:

```python
pip install autogluon
```

Visit our [Installation Guide](https://auto.gluon.ai/stable/install.html) for detailed instructions, including GPU support, Conda installs, and optional dependencies.

## ⚑ Quickstart

Build accurate end-to-end ML models in just 3 lines of code!

```python
from autogluon.tabular import TabularPredictor
predictor = TabularPredictor(label="class").fit("train.csv")
predictions = predictor.predict("test.csv")
```

<table>
    <thead>
        <tr>
            <th style="text-align: left">AutoGluon Task</th>
            <th style="text-align: left">Quickstart</th>
            <th style="text-align: left">API</th>
        </tr>
    </thead>
    <tbody>
        <tr>
            <td>TabularPredictor</td>
            <td>
                <a href="https://auto.gluon.ai/stable/tutorials/tabular/tabular-quick-start.html">
                    <img style="margin: 0" alt="Quick Start" src="https://img.shields.io/static/v1?label=&message=tutorial&color=grey">
                </a>
            </td>
            <td>
                <a href="https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html">
                    <img style="margin: 0" alt="API" src="https://img.shields.io/badge/api-reference-blue.svg">
                </a>
            </td>
        </tr>
        <tr>
            <td>TimeSeriesPredictor</td>
            <td>
                <a href="https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-quick-start.html">
                    <img style="margin: 0" alt="Quick Start" src="https://img.shields.io/static/v1?label=&message=tutorial&color=grey">
                </a>
            </td>
            <td>
                <a href="https://auto.gluon.ai/stable/api/autogluon.timeseries.TimeSeriesPredictor.html">
                    <img style="margin: 0" alt="API" src="https://img.shields.io/badge/api-reference-blue.svg">
                </a>
            </td>
        </tr>
        <tr>
            <td>MultiModalPredictor</td>
            <td>
                <a href="https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html">
                    <img style="margin: 0" alt="Quick Start" src="https://img.shields.io/static/v1?label=&message=tutorial&color=grey">
                </a>
            </td>
            <td>
                <a href="https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html">
                    <img style="margin: 0" alt="API" src="https://img.shields.io/badge/api-reference-blue.svg">
                </a>
            </td>
        </tr>
    </tbody>
</table>


## πŸ” Resources

### Hands-on Tutorials / Talks

Below is a curated list of recent tutorials and talks on AutoGluon. A comprehensive list is available [here](AWESOME.md#videos--tutorials).

| Title                                                                                                                    | Format   | Location                                                                         | Date       |
|--------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------|------------|
| πŸ“Ί [AutoGluon 1.0: Shattering the AutoML Ceiling with Zero Lines of Code](https://www.youtube.com/watch?v=5tvp_Ihgnuk) | Tutorial | [AutoML Conf 2023](https://2023.automl.cc/)                                      | 2023/09/12 |
| πŸ”‰ [AutoGluon: The Story](https://automlpodcast.com/episode/autogluon-the-story)                                       | Podcast  | [The AutoML Podcast](https://automlpodcast.com/)                                 | 2023/09/05 |
| πŸ“Ί [AutoGluon: AutoML for Tabular, Multimodal, and Time Series Data](https://youtu.be/Lwu15m5mmbs?si=jSaFJDqkTU27C0fa) | Tutorial | PyData Berlin                                                                    | 2023/06/20 | 
| πŸ“Ί [Solving Complex ML Problems in a few Lines of Code with AutoGluon](https://www.youtube.com/watch?v=J1UQUCPB88I)    | Tutorial | PyData Seattle                                                                   | 2023/06/20 | 
| πŸ“Ί [The AutoML Revolution](https://www.youtube.com/watch?v=VAAITEds-28)                                                | Tutorial | [Fall AutoML School 2022](https://sites.google.com/view/automl-fall-school-2022) | 2022/10/18 |

### Scientific Publications
- [AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data](https://arxiv.org/pdf/2003.06505.pdf) (*Arxiv*, 2020) ([BibTeX](CITING.md#general-usage--autogluontabular))
- [Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation](https://proceedings.neurips.cc/paper/2020/hash/62d75fb2e3075506e8837d8f55021ab1-Abstract.html) (*NeurIPS*, 2020) ([BibTeX](CITING.md#tabular-distillation))
- [Benchmarking Multimodal AutoML for Tabular Data with Text Fields](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper-round2.pdf) (*NeurIPS*, 2021) ([BibTeX](CITING.md#autogluonmultimodal))
- [XTab: Cross-table Pretraining for Tabular Transformers](https://proceedings.mlr.press/v202/zhu23k/zhu23k.pdf) (*ICML*, 2023)
- [AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting](https://arxiv.org/abs/2308.05566) (*AutoML Conf*, 2023) ([BibTeX](CITING.md#autogluontimeseries))
- [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*Under Review*, 2024)

### Articles
- [AutoGluon-TimeSeries: Every Time Series Forecasting Model In One Library](https://towardsdatascience.com/autogluon-timeseries-every-time-series-forecasting-model-in-one-library-29a3bf6879db) (*Towards Data Science*, Jan 2024)
- [AutoGluon for tabular data: 3 lines of code to achieve top 1% in Kaggle competitions](https://aws.amazon.com/blogs/opensource/machine-learning-with-autogluon-an-open-source-automl-library/) (*AWS Open Source Blog*, Mar 2020)
- [AutoGluon overview & example applications](https://towardsdatascience.com/autogluon-deep-learning-automl-5cdb4e2388ec?source=friends_link&sk=e3d17d06880ac714e47f07f39178fdf2) (*Towards Data Science*, Dec 2019)

### Train/Deploy AutoGluon in the Cloud
- [AutoGluon Cloud](https://auto.gluon.ai/cloud/stable/index.html) (Recommended)
- [AutoGluon on SageMaker AutoPilot](https://auto.gluon.ai/stable/tutorials/cloud_fit_deploy/autopilot-autogluon.html)
- [AutoGluon on Amazon SageMaker](https://auto.gluon.ai/stable/tutorials/cloud_fit_deploy/cloud-aws-sagemaker-train-deploy.html)
- [AutoGluon Deep Learning Containers](https://github.com/aws/deep-learning-containers/blob/master/available_images.md#autogluon-training-containers) (Security certified & maintained by the AutoGluon developers)
- [AutoGluon Official Docker Container](https://hub.docker.com/r/autogluon/autogluon)
- [AutoGluon-Tabular on AWS Marketplace](https://aws.amazon.com/marketplace/pp/prodview-n4zf5pmjt7ism) (Not maintained by us)

## πŸ“ Citing AutoGluon

If you use AutoGluon in a scientific publication, please refer to our [citation guide](CITING.md).

## πŸ‘‹ How to get involved

We are actively accepting code contributions to the AutoGluon project. If you are interested in contributing to AutoGluon, please read the [Contributing Guide](https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md) to get started.

## πŸ›οΈ License

This library is licensed under the Apache 2.0 License.