Spaces:
Sleeping
Sleeping
Add detailed logging and improve system prompt
Browse files
app.py
CHANGED
@@ -13,7 +13,14 @@ from aimakerspace.openai_utils.chatmodel import ChatOpenAI
|
|
13 |
import chainlit as cl
|
14 |
|
15 |
system_template = """\
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
system_role_prompt = SystemRolePrompt(system_template)
|
18 |
|
19 |
user_prompt_template = """\
|
@@ -33,6 +40,10 @@ class RetrievalAugmentedQAPipeline:
|
|
33 |
async def arun_pipeline(self, user_query: str):
|
34 |
# Get more contexts but limit the total length
|
35 |
context_list = self.vector_db_retriever.search_by_text(user_query, k=3) # Reduced from 6 to 3
|
|
|
|
|
|
|
|
|
36 |
|
37 |
# Limit total context length to approximately 3000 tokens (12000 characters)
|
38 |
context_prompt = ""
|
@@ -45,11 +56,17 @@ class RetrievalAugmentedQAPipeline:
|
|
45 |
context_prompt += context[0] + "\n"
|
46 |
total_length += len(context[0])
|
47 |
|
48 |
-
print(f"
|
49 |
|
50 |
formatted_system_prompt = system_role_prompt.create_message()
|
51 |
formatted_user_prompt = user_role_prompt.create_message(question=user_query, context=context_prompt)
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
async def generate_response():
|
54 |
async for chunk in self.llm.astream([formatted_system_prompt, formatted_user_prompt]):
|
55 |
yield chunk
|
|
|
13 |
import chainlit as cl
|
14 |
|
15 |
system_template = """\
|
16 |
+
You are a helpful AI assistant that answers questions based on the provided context.
|
17 |
+
Your task is to:
|
18 |
+
1. Carefully read and understand the context
|
19 |
+
2. Answer the user's question using ONLY the information from the context
|
20 |
+
3. If the answer cannot be found in the context, say "I cannot find the answer in the provided context"
|
21 |
+
4. If you find partial information, share what you found and indicate if more information might be needed
|
22 |
+
|
23 |
+
Remember: Only use information from the provided context to answer questions."""
|
24 |
system_role_prompt = SystemRolePrompt(system_template)
|
25 |
|
26 |
user_prompt_template = """\
|
|
|
40 |
async def arun_pipeline(self, user_query: str):
|
41 |
# Get more contexts but limit the total length
|
42 |
context_list = self.vector_db_retriever.search_by_text(user_query, k=3) # Reduced from 6 to 3
|
43 |
+
print("\nRetrieved contexts:")
|
44 |
+
for i, (context, score) in enumerate(context_list):
|
45 |
+
print(f"\nContext {i+1} (score: {score:.3f}):")
|
46 |
+
print(context[:200] + "..." if len(context) > 200 else context)
|
47 |
|
48 |
# Limit total context length to approximately 3000 tokens (12000 characters)
|
49 |
context_prompt = ""
|
|
|
56 |
context_prompt += context[0] + "\n"
|
57 |
total_length += len(context[0])
|
58 |
|
59 |
+
print(f"\nUsing {len(context_prompt.split())} words of context")
|
60 |
|
61 |
formatted_system_prompt = system_role_prompt.create_message()
|
62 |
formatted_user_prompt = user_role_prompt.create_message(question=user_query, context=context_prompt)
|
63 |
|
64 |
+
print("\nFinal messages being sent to the model:")
|
65 |
+
print("\nSystem prompt:")
|
66 |
+
print(formatted_system_prompt)
|
67 |
+
print("\nUser prompt:")
|
68 |
+
print(formatted_user_prompt)
|
69 |
+
|
70 |
async def generate_response():
|
71 |
async for chunk in self.llm.astream([formatted_system_prompt, formatted_user_prompt]):
|
72 |
yield chunk
|