File size: 45,012 Bytes
131da64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 |
from email.mime import image
import os
import random
import typing
from pathlib import Path
from typing import Optional
import subprocess
import datasets
import torch
from numpy import pad
from PIL import Image, ImageFile
from tensordict import TensorDict
from torchvision import transforms
from decoupled_utils import get_world_size
import time
import re
import shutil
from constants import UNIDISC_DIR
from decoupled_utils import barrier, get_rank, gprint, is_local_main_process, is_main_process, is_torch_cuda_available, is_torch_xla_available, rprint
from models.datasets.webdataset_utils import get_data
import hashlib
from decoupled_utils import sanitize_filename
from omegaconf import OmegaConf, read_write
from models.datasets.misc_image_datasets import *
from copy import deepcopy
from datasets import Dataset, DatasetDict
import numpy as np
from PIL import Image
import json
ImageFile.LOAD_TRUNCATED_IMAGES = True
import torch
from torch.utils.data import Subset
def split_dataset(dataset, n: int, m: int):
# Ensure m is valid
if m < 0 or m >= n:
raise ValueError(f"m must be between 0 and {n-1}, but got {m}.")
# Calculate the size of each subset
total_len = len(dataset)
subset_size = total_len // n
remainder = total_len % n
# Calculate the start and end index of the m-th subset
start_idx = m * subset_size + min(m, remainder)
end_idx = start_idx + subset_size + (1 if m < remainder else 0)
# Return the m-th subset
indices = list(range(start_idx, end_idx))
if isinstance(dataset, torch.utils.data.Dataset):
return Subset(dataset, indices)
else:
return dataset[slice(start_idx, end_idx)]
def get_webdataset_indexed(config, tokenizer, transform, cond_transform, n_samples, name, should_tokenize=False):
should_tokenize = ("tokenize" in name) or should_tokenize
import wids # You need to use the custom sampler!!
custom_ignore_func_dict = {
"pixelprose": lambda x: len(x[".txt"]) > 400,
}
valid_func = None
for k in custom_ignore_func_dict.keys():
if k in name:
valid_func = custom_ignore_func_dict[k]
break
from dataloader import tokenize_text
def process(x, idx):
data = {}
if "mmc4" in name:
print(x['.json']['image_info'][0])
breakpoint()
img = x[".jpg"].convert("RGB")
data["is_valid"] = True
if valid_func is not None and valid_func(x) is False:
print(f"Invalid")
data["is_valid"] = False
data["img"] = transform(img)
if cond_transform is not None:
data["cond_img"] = cond_transform(x[".jpg"].convert("RGB"))
if data["img"].shape[0] != 3:
raise Exception(f"Image shape: {data['img'].shape}, {x['.jpg'].size}, {x['.jpg'].mode}")
if "pixelprose" in name:
before = x[".txt"]
x[".txt"] = re.sub(r"This image displays.*?(?=[a-zA-Z0-9])", "", x[".txt"])
if abs(len(before) - len(x[".txt"])) > 100:
data["is_valid"] = False
if not "imagenet" in name:
if should_tokenize:
tokens = tokenize_text(tokenizer, config.data.block_size, x[".txt"])
data["input_ids"] = tokens["input_ids"]
data["attention_mask"] = tokens["attention_mask"].float()
else:
data[".txt"] = x[".txt"]
data["idx"] = idx
return data
disable_split = False
if isinstance(config.data.raw_data_dir, str) and '*' in config.data.raw_data_dir:
import glob
index_path = sorted(glob.glob(config.data.raw_data_dir))
if not index_path:
raise ValueError(f"No files found matching the pattern: {config.data.raw_data_dir:}")
print(f"Expanded glob pattern to {len(index_path)} files")
if os.getenv("SLURM_ARRAY_TASK_COUNT", None) is not None:
index_path = split_dataset(index_path, int(os.getenv("SLURM_ARRAY_TASK_COUNT")), int(os.getenv("SLURM_ARRAY_TASK_ID")))
print(f"After splitting, dataset is length {len(index_path)}")
shards = []
for shard in index_path:
shards.append({"url": shard, "nsamples": wids.wids.compute_num_samples(shard)})
print(f"Shard: {shard}")
index_path = shards
disable_split = True
elif Path(config.data.raw_data_dir).is_file():
index_path = config.data.raw_data_dir
else:
default_path = Path(config.data.raw_data_dir) / "index.json"
shard_path = Path(config.data.raw_data_dir) / "shardindex.json"
index_path = str(default_path if default_path.exists() else shard_path)
assert getattr(config.data, "shard_list_path", None) is None, "shard_list_path is deprecated, use raw_data_dir instead"
dataset = wids.ShardListDataset(index_path) # lru_size=20
dataset = CustomTransformDataset(dataset, process)
if n_samples is not None:
from torch.utils.data import Subset
indices = torch.randperm(len(dataset))[:n_samples]
dataset = Subset(dataset, indices)
if config.data.split_dataset and not disable_split:
gprint(f"Original dataset was length {len(dataset)}")
dataset = split_dataset(dataset, int(os.getenv("SLURM_ARRAY_TASK_COUNT")), int(os.getenv("SLURM_ARRAY_TASK_ID")))
gprint(f"After splitting, dataset is length {len(dataset)}")
return dataset
def _copy_data(src_path, dst_path, use_rsync=True):
dst_path.mkdir(parents=True, exist_ok=True)
if use_rsync:
rprint(f"Rsyncing data from {src_path} to {dst_path}")
rsync_command = ["rsync", "-av", str(src_path) + "/", str(dst_path) + "/"]
try:
result = subprocess.run(rsync_command, check=True, capture_output=True, text=True)
rprint(f"Rsync output: {result.stdout}")
rprint(f"Successfully rsynced data from {src_path} to {dst_path}")
except subprocess.CalledProcessError as e:
rprint(f"Rsync failed: {e}")
rprint(f"Rsync stderr: {e.stderr}")
raise
else:
rprint(f"Copying tensordict from {src_path} to {dst_path}")
shutil.copytree(src_path, dst_path)
rprint(f"Copied tensordict from {src_path} to {dst_path}")
def copy_data(shm_path, src_path, dst_path):
shm_path.mkdir(parents=True, exist_ok=True)
use_rsync = True
if not dst_path.exists() or use_rsync:
_copy_data(src_path, dst_path, use_rsync=use_rsync)
else:
src_files = sum(1 for _ in src_path.rglob('*'))
dst_files = sum(1 for _ in dst_path.rglob('*'))
src_size = sum(f.stat().st_size for f in src_path.rglob('*') if f.is_file())
dst_size = sum(f.stat().st_size for f in dst_path.rglob('*') if f.is_file())
size_diff_percent = abs(src_size - dst_size) / max(src_size, dst_size) * 100
if src_files != dst_files or size_diff_percent > 10:
rprint(f"Src files: {src_files}, Dst files: {dst_files} contain different number of files, {src_size} {dst_size}, size difference {size_diff_percent}, Deleting {dst_path}")
shutil.rmtree(dst_path)
rprint(f"Deleted {dst_path}, copying from {src_path}")
_copy_data(src_path, dst_path, use_rsync=False)
rprint(f"Deleted and re-copied tensordict from {src_path} to {dst_path}")
else:
rprint(f"Tensordict already exists at {dst_path}, loading from there")
def get_tensordict(config, path, dataset_idx, dataset_name=None):
parquet_files = list(Path(path).glob('*.arrow'))
if parquet_files:
# Does not load into memory by default
from datasets import load_from_disk
dataset = load_from_disk(path)
rprint(f"Loaded {len(dataset)} samples from {path} as parquet")
return dataset
if getattr(config.data, "force_dummy_tensordict", False):
return get_dummy_tensordict(config, 1000000, dataset_idx=dataset_idx)
if config.data.move_tensordict_to_shm:
assert config.data.keep_tensordict_on_disk is True
shm_path = Path(getattr(config.data, "shm_path", Path("/dev/shm") / Path.home().name))
src_path = Path(path)
dst_path = shm_path / (dataset_name if dataset_name is not None else src_path.name)
if getattr(config.data, "skip_copy_tensordict_to_shm", False):
gprint(f"Skipping copy of tensordict to SHM")
elif is_torch_xla_available():
if is_main_process():
copy_data(shm_path, src_path, dst_path)
barrier()
if not is_main_process():
import time
from torch_xla._internal import tpu
host_ip = tpu.get_worker_ips()[0]
file_dst_path = Path(shm_path)
src_path_on_host = f"aswerdlow@{host_ip}:{file_dst_path}"
gprint(f"Copying data from {src_path_on_host} to {file_dst_path}")
file_dst_path.mkdir(parents=True, exist_ok=True)
max_retries = 5
retry_delay = 15
for attempt in range(max_retries):
try:
gprint(f"After main copy, rsyncing data from {src_path_on_host} to {file_dst_path}")
command = f'bash {(UNIDISC_DIR / "scripts/rsync_data.sh").resolve()} {src_path_on_host}/ {file_dst_path}/'
os.environ.pop('SSH_AUTH_SOCK', None) # Breaks without this
gprint(command)
subprocess.run(command, shell=True, check=True)
gprint(f"Successfully rsynced data from {src_path_on_host} to {file_dst_path}")
break
except subprocess.CalledProcessError as e:
if attempt < max_retries - 1:
gprint(f"Rsync attempt {attempt + 1} failed. Retrying in {retry_delay} seconds..., {e}")
time.sleep(retry_delay)
retry_delay *= 2
else:
raise RuntimeError(f"Failed to rsync data after {max_retries} attempts: {e}")
gprint(f"Finished rsyncing data from {src_path_on_host} to {file_dst_path}")
barrier()
else:
if is_local_main_process():
copy_data(shm_path, src_path, dst_path)
# For now we assume we are on SPMD and there is only one process per worker [node]
if not is_torch_xla_available():
barrier()
else:
dst_path = Path(path)
path = dst_path
data = TensorDict.load_memmap(path)
if config.data.keep_tensordict_on_disk:
rprint(f"Keeping tensordict on disk at {path}")
else:
data = data.clone() # Move to CPU memory
rprint(f"Loaded {len(data)} samples from {path}")
return data
def get_dummy_tensordict(config, dataset_size, txt_length=None, img_length=None, dataset_idx=0):
if img_length is None:
img_length = config.model.img_length
if txt_length is None:
txt_length = config.model.txt_length
return TensorDict(
{
"input_ids": torch.ones(dataset_size, config.model.length, dtype=torch.int32),
"attention_mask": torch.ones(dataset_size, config.model.length, dtype=torch.bool),
"img_input_ids": torch.ones(dataset_size, img_length, dtype=torch.int16),
"txt_input_ids": torch.ones(dataset_size, txt_length, dtype=torch.int32),
"txt_attention_mask": torch.ones(dataset_size, txt_length, dtype=torch.bool),
"idx": torch.arange(dataset_size, dtype=torch.int32).view(-1, 1),
"dataset_idx": torch.full((dataset_size,), fill_value=dataset_idx, dtype=torch.int32),
"write_flag": torch.zeros(dataset_size, 1, dtype=torch.bool),
},
batch_size=[dataset_size],
)
def get_token_dataset(config, name, is_train, n_samples, n_duplicate, tokenizer):
assert getattr(config.data, "token_data_dir", None) is None, "token_data_dir is deprecated, use data_dir_train and data_dir_val instead"
if "dummy" in name:
return get_dummy_tensordict(config, n_samples if n_samples is not None else 100000)
data_key = (
config.data.data_dir_train if is_train else (config.data.data_dir_val if config.data.data_dir_val is not None else config.data.data_dir_train)
)
image_datasets_key = getattr(config.data, "image_data_train", None) if is_train else getattr(config.data, "image_data_val", None)
if config.data.use_weighted_tensordict_sampler:
_dataset_cls = MultipleTensorDictDataset
_datasets = [get_tensordict(config, x['dir'], dataset_idx=i, dataset_name=x['name']) for i, x in enumerate(data_key)]
_weights = [x['weight'] for x in data_key]
_dataset_names = [x['name'] for x in data_key]
_kwargs = dict()
_kwargs["config"] = config
_kwargs["tokenizer"] = tokenizer
if any(not isinstance(x, TensorDict) for x in _datasets):
_kwargs["returns_parquet"] = True
elif getattr(config.data, "add_text_to_weighted_sampler", False):
from datasets import load_dataset, interleave_datasets
rprint("Loading smollm datasets")
ds1 = load_dataset("HuggingFaceTB/smollm-corpus", "cosmopedia-v2", split="train", cache_dir=config.data.cache_dir, streaming=True)
ds2 = load_dataset("HuggingFaceTB/smollm-corpus", "fineweb-edu-dedup", split="train", cache_dir=config.data.cache_dir, streaming=True)
# DKYoon/SlimPajama-6B, "cerebras/SlimPajama-627B"
ds3 = load_dataset("DKYoon/SlimPajama-6B", split="train", cache_dir=config.data.cache_dir, streaming=True)
ds4 = load_dataset("bigcode/starcoderdata", split="train", cache_dir=config.data.cache_dir, streaming=True)
rprint(f"Finished loading datasets")
if getattr(config.data, "code_only", False):
_dataset = ds4
else:
_dataset = interleave_datasets([ds1, ds2, ds3, ds4], probabilities=[0.3, 0.3, 0.2, 0.2], seed=config.seed)
rprint(f"Finished interleaving datasets")
_datasets.append(_dataset)
_weights.append(1)
_dataset_names.append("SlimPajama-627B")
_kwargs["returns_tokenized_text"] = True
rprint(f"Finished creating dataset")
elif image_datasets_key is not None:
returns_raw_images = False
tokenize_vqvae_in_dataloader = False
allow_label = False
for key in image_datasets_key:
_key = OmegaConf.to_object(key)
if _key.get("raw_images", False) or config.data.force_raw_images_in_multiple_tensordict:
rprint(f"WARNING!!! Using raw images")
returns_raw_images = True
if _key.get("tokenize_vqvae_in_dataloader", False):
tokenize_vqvae_in_dataloader = True
if _key.get("allow_label", False):
rprint(f"WARNING!!! Using allow_label")
allow_label = True
if config.data.force_raw_images_in_multiple_tensordict:
tokenize_vqvae_in_dataloader = False
_key["tokenize_vqvae_in_dataloader"] = False
_key["disable_text_modality"] = True
image_config = OmegaConf.merge(deepcopy(config),
{
"data": {
**{k:v for k,v in _key.items() if k not in {"dir", "weight", "name", "raw_images"}}
},
}
)
image_dataset = get_image_dataset(
mode="train" if is_train else "val",
config=image_config,
tokenizer=tokenizer,
allow_aug=is_train,
force_aug=False,
name=key["train"] if is_train else key["val"],
)
_datasets.append(image_dataset)
_weights.append(key["weight"])
_dataset_names.append(key["name"])
_kwargs["returns_raw_images"] = returns_raw_images
_kwargs["returns_tokenize_vqvae_in_dataloader"] = tokenize_vqvae_in_dataloader
_kwargs["allow_label"] = allow_label
if n_samples is not None:
if getattr(config.data, "force_no_shuffle_tensordict", False):
_datasets = [data[:n_samples] for data in _datasets]
else:
_datasets = [data[torch.randperm(len(data), generator=torch.Generator().manual_seed(config.seed))[:n_samples]] for data in _datasets]
rprint(f"Sampled {n_samples} samples from {len(_datasets)}, is_train: {is_train}.")
data = _dataset_cls(datasets=_datasets, weights=_weights, dataset_names=_dataset_names, **_kwargs)
else:
data = get_tensordict(config, data_key, 0)
if n_samples is not None:
if getattr(config.data, "force_no_shuffle_tensordict", False):
indices = list(range(n_samples))
else:
indices = torch.randperm(len(data), generator=torch.Generator().manual_seed(config.seed))[:n_samples]
data = data[indices]
rprint(f"Sampled {n_samples} samples from {len(data)}, is_train: {is_train}. First 2 indices: {indices[:2]}")
if n_duplicate is not None:
data = torch.cat([data for _ in range(n_duplicate)], dim=0)
rprint(f"Duplicated {n_duplicate} times, now {len(data)} samples")
return data
class UnpairedDatasetWrapper(torch.utils.data.Dataset):
def __init__(self, img_dataset, txt_dataset, shuffle=True):
self.img_dataset = img_dataset
self.txt_dataset = txt_dataset
self.shuffle = shuffle
def __len__(self):
if self.shuffle:
return min(len(self.img_dataset), len(self.txt_dataset))
else:
return max(len(self.img_dataset), len(self.txt_dataset))
def __getitem__(self, idx):
while True:
try:
if self.shuffle:
img_idx = torch.randint(0, len(self.img_dataset), (1,)).item()
txt_idx = torch.randint(0, len(self.txt_dataset), (1,)).item()
else:
txt_idx = idx
img_idx = idx % len(self.img_dataset)
return dict(**self.img_dataset[img_idx], **self.txt_dataset[txt_idx])
except Exception as e:
gprint(e)
import traceback
traceback.print_exc()
idx = (idx + 1) % len(self)
def get_unpaired_dataset(config=None, tokenizer=None, mode="train", **kwargs):
image_dataset = get_image_dataset(config=config, mode=mode, tokenizer=tokenizer, **kwargs)
from models.datasets.text_datasets import get_text_dataset
text_dataset = get_text_dataset(
dataset_name=getattr(config.data, "txt_train", "text8") if mode == "train" else getattr(config.data, "txt_val", "text8"),
tokenizer=tokenizer,
mode="test" if (mode == "validation" and getattr(config.data, "txt_val", "text8") == "lm1b") else mode,
wrap=config.data.wrap,
block_size=config.model.txt_length, # Intentional
cache_dir=config.data.cache_dir,
num_proc=config.data.num_proc,
streaming=config.data.streaming,
)
return UnpairedDatasetWrapper(image_dataset, text_dataset, shuffle=getattr(config.data, "force_disable_shuffle", False) is False)
def get_transform(resolution, orig_mode, allow_aug, force_aug, aggressive_aug=False):
if orig_mode == "train" and (allow_aug or force_aug):
if aggressive_aug:
rprint("Using aggressive augmentations")
transform = transforms.Compose(
[
transforms.RandomResizedCrop((resolution, resolution), scale=(0.8, 1.0), ratio=(0.97, 1.03)),
transforms.RandomHorizontalFlip(1.0 if force_aug else 0.5),
transforms.ToTensor(),
]
)
else:
transform = transforms.Compose(
[
transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.RandomCrop((resolution, resolution)),
transforms.RandomHorizontalFlip(1.0 if force_aug else 0.5),
transforms.ToTensor(),
]
)
else:
transform = transforms.Compose(
[
transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop((resolution, resolution)),
transforms.ToTensor(),
]
)
return transform
def load_vqvae_from_cache(config, full_cache_path):
global_cache_parent = os.environ.get("DIFFUSION_DATA_DIR", None)
if global_cache_parent is not None:
global_full_cache_path = Path(global_cache_parent) / full_cache_path.relative_to(Path(config.data.cache_dir))
gprint(f"Checking global cache path: {global_full_cache_path}")
if global_full_cache_path.exists() and len(list(global_full_cache_path.iterdir())) > 0:
gprint(f"Loading data from global cache: {global_full_cache_path}")
full_cache_path = global_full_cache_path
if not (full_cache_path.exists() and len(list(full_cache_path.iterdir())) > 0):
gprint(f"Cache path {full_cache_path} does not exist or is empty")
return None
gprint(f"Loading data from: {full_cache_path}, found {len(list(full_cache_path.iterdir()))} shards")
ret = []
kwargs = dict()
if config.data.keep_hf_dataset_in_memory:
kwargs["keep_in_memory"] = True
if config.loader.num_workers > 0:
for _ in range(5):
gprint(f"WARNING!!!! Keeping dataset in memory and num_workers > 0, this will cause excessive memory usage")
else:
gprint(f"Loading datasets into memory")
for folder in full_cache_path.iterdir():
if folder.is_dir():
ret.append(datasets.load_from_disk(folder, **kwargs))
ret = datasets.concatenate_datasets(ret).with_format("torch")
gprint(f"Loaded data from cache: {full_cache_path} with {len(ret)} samples")
return ret
def get_vqvae_dataloader(config, name, split):
cache_key = f'vqvae_tokenized_{name}_{split}_{config.data.resolution}'
vae_ckpt_hash = ""
if hasattr(config.model, "use_custom_vae_ckpt") and config.model.use_custom_vae_ckpt:
vae_ckpt_hash = hashlib.md5(str(Path(config.model.use_custom_vae_ckpt).name).encode()).hexdigest()[:8]
cache_key += f"_{vae_ckpt_hash}"
if hasattr(config.model, "vae_type") and config.model.vae_type != "VQ-16":
cache_key += f"_{config.model.vae_type}"
if getattr(config.data, "vqvae_cache_suffix", None) is not None:
cache_key += f"_{config.data.vqvae_cache_suffix}"
cache_dir = config.data.cache_dir
full_cache_path = Path(cache_dir) / "tokens" / sanitize_filename(cache_key)
return full_cache_path
def get_image_dataset(mode, config, tokenizer, allow_aug=True, force_aug=False, name=None, **kwargs):
rprint(f"Getting image dataset with mode {mode}")
if getattr(config.data, "tokenizers_parallelism", None) is not None:
rprint(f"Setting tokenizers parallelism to {config.data.tokenizers_parallelism}")
os.environ["TOKENIZERS_PARALLELISM"] = "false" if config.data.tokenizers_parallelism is False else "true"
resolution = config.data.resolution
name = name or config.data.train
streaming = config.data.streaming
precache = config.data.precache
dynamic = streaming or precache is False
orig_mode = mode
block_size = getattr(config.data, "block_size", 1024)
is_train = orig_mode == "train"
n_duplicate_train = getattr(config.data, "n_duplicate_train", None)
n_duplicate_val = getattr(config.data, "n_duplicate_val", None)
n_duplicate = n_duplicate_train if is_train else n_duplicate_val
n_val_samples = getattr(config.data, "n_val_samples", None)
n_train_samples = getattr(config.data, "n_train_samples", None)
n_samples = n_train_samples if is_train else n_val_samples
raw_data_dir = getattr(config.data, "raw_data_dir", getattr(config.data, "data_dir", None))
rprint(f"Data dir is {raw_data_dir}")
unified_model = getattr(config.model, "unified_model", False) and getattr(config.data, "unpaired", False) is False
cond_resolution = getattr(config.data, "cond_resolution", None)
if "sora" in name:
return get_sora_dataset(config=config, tokenizer=tokenizer, **kwargs)
elif "tokens" in name:
print(f"Loading token dataset {name}")
assert config.data.use_token_dataset, "data.use_token_dataset must be true to load token datasets"
return get_token_dataset(config, name, is_train, n_samples, n_duplicate, tokenizer)
dataset_splits = {
"cassiekang/cub200_dataset": (
"train"
if ((orig_mode == "train" and n_train_samples is not None) or (orig_mode != "train" and n_val_samples is not None))
else "train+test"
),
"nlphuji/flickr30k": "test",
"richwardle/reduced-imagenet": "train",
"tglcourse/lsun_church_train": "train" if is_train else "test",
"pixparse/cc12m-wds": "train",
"imagenet": "train" if is_train else "val",
"imagefolder": "train" if is_train else "validation",
"ILSVRC/imagenet-1k": "train" if is_train else "validation",
"pouya-haghi/imagenet-subset": "validation",
"laion/clevr-webdataset": "train" if is_train else "validation",
"pcuenq/lsun-bedrooms": "train" if is_train else "test",
"facebook/winoground": "test",
"sayakpaul/coco-30-val-2014": "train"
}
split = dataset_splits[name] if name in dataset_splits else "train"
if n_samples is not None:
split = f"{split}[:{n_samples}]"
extra_kwargs = dict()
cache_dir = Path(config.data.cache_dir)
cache_dir.mkdir(parents=True, exist_ok=True)
if "HF_HUB_DATASETS_TOKEN" in os.environ:
extra_kwargs["token"] = os.environ["HF_HUB_DATASETS_TOKEN"]
if name == "mmc4" or name == "cambrian":
from unidisc.tokenizers.tokenize_interleaved import JsonlDataset
dataset = JsonlDataset(glob_pattern=config.data.raw_data_dir)
if n_samples is not None:
from torch.utils.data import Subset
indices = list(range(len(dataset)))[:n_samples]
dataset = Subset(dataset, indices)
if config.data.split_dataset:
if getattr(config.data, "split_dataset_total_count", None) is not None and \
getattr(config.data, "split_dataset_cur_idx", None) is not None:
gprint(f"Splitting dataset into {config.data.split_dataset_total_count} shards, original length {len(dataset)}")
dataset = split_dataset(dataset, config.data.split_dataset_total_count, config.data.split_dataset_cur_idx)
gprint(f"Original dataset was length {len(dataset)}")
total_count, cur_idx = int(os.getenv("SLURM_ARRAY_TASK_COUNT")), int(os.getenv("SLURM_ARRAY_TASK_ID"))
dataset = split_dataset(dataset, total_count, cur_idx)
gprint(f"After splitting, dataset is length {len(dataset)}")
return dataset
if name == "imagefolder":
from datasets.data_files import DataFilesDict
with open(config.data.train_data_dir, "r") as f:
train_txt = [f"{config.data.data_dir}/{line.strip()}" for line in f.readlines()]
with open(config.data.val_data_dir, "r") as f:
val_txt = [f"{config.data.data_dir}/{line.strip()}" for line in f.readlines()]
data_files = DataFilesDict({"train": train_txt, "validation": val_txt})
extra_kwargs["data_files"] = data_files
if config.data.tokenize_vqvae_in_dataloader and not getattr(config.data, "allow_aug_vqvae_dataloader", False):
rprint(f"WARNING!!!! Disabling augmentations for VQVAE dataloader")
allow_aug = False
force_aug = False
transform = get_transform(resolution, orig_mode, allow_aug, force_aug, getattr(config.data, "aggressive_aug", False))
if cond_resolution is not None:
cond_transform = get_transform(cond_resolution, orig_mode, allow_aug, force_aug)
else:
cond_transform = None
if kwargs.get("transform", None) is not None:
rprint(f"Using transform from kwargs: {kwargs['transform']}")
transform = kwargs.pop("transform")
if name == "torchvision_imagenet":
from torchvision.datasets import ImageFolder
raw_data_dir = Path(config.data.raw_data_dir)
raw_data_dir = raw_data_dir / "train" if orig_mode == "train" else raw_data_dir / "val"
dataset = ImageFolder(raw_data_dir, transform=transform)
dataset = CustomTransformDataset(dataset, lambda x, idx: {"img": x[0], "label": x[1]})
return dataset
if "pixparse/cc12m-wds-fast" in name or "pixparse/cc3m-wds-fast" in name or "indexed" in name:
return get_webdataset_indexed(config, tokenizer, transform, cond_transform, n_samples, name, should_tokenize=True)
if name == "vggface2":
dataset = VGGFace(
Path(raw_data_dir),
is_train,
transform=transform,
filter_resolution=(resolution - 48),
cond_transform=cond_transform,
v2=getattr(config.data, "add_vggface_v2_attributes", False),
)
rprint(f"VGGFace2 has size {len(dataset)}")
return dataset
if name == "cub2011_custom":
from models.datasets.cub200 import TextDataset
dataset = TextDataset(data_dir='/path/to/cub200/birds', split='train' if is_train else 'test')
return dataset
wds_config = OmegaConf.create(
{
"train_data": None,
"val_data": None,
"dataset_type": "webdataset",
"train_data_upsampling_factors": None,
"batch_size": config.loader.batch_size if mode == "train" else config.loader.eval_batch_size,
"workers": config.loader.num_workers,
"distributed": True,
"seed": config.seed,
"val_num_samples": None,
"train_num_samples": config.data.webdataset_train_num_samples,
"val_num_samples": config.data.webdataset_val_num_samples,
"world_size": config.trainer.devices * config.trainer.num_nodes,
"block_size": block_size,
}
)
if config.data.dataset_type == "webdataset":
clean_brace_escape = lambda x: x.replace("[", "{").replace("]", "}")
wds_config.train_data = clean_brace_escape(config.data.webdataset_train_data)
wds_config.val_data = clean_brace_escape(config.data.webdataset_val_data)
if getattr(config.data, "webdataset_prefix", None) is not None:
wds_config.train_data = config.data.webdataset_prefix.replace("LITERALQUOTE", "'").replace("LITERALSPACE", " ") + wds_config.train_data
wds_config.val_data = config.data.webdataset_prefix.replace("LITERALQUOTE", "'").replace("LITERALSPACE", " ") + wds_config.val_data
if getattr(config.data, "webdataset_postfix", None) is not None:
wds_config.train_data = wds_config.train_data + config.data.webdataset_postfix.replace("LITERALQUOTE", "'").replace("LITERALSPACE", " ")
wds_config.val_data = wds_config.val_data + config.data.webdataset_postfix.replace("LITERALQUOTE", "'").replace("LITERALSPACE", " ")
return get_data(wds_config, (transform, transform), epoch=0, tokenizer=tokenizer)
if name == "laion400m":
# TODO: Debug if these configs are correct!!!! Not fully sure how the webdataset sharded dataloader should work.
wds_config.train_data = "/grogu/datasets/laion400m/dataset/{00000..00625}.tar"
wds_config.val_data = "/grogu/datasets/laion400m/dataset/{00000..00625}.tar"
return get_data(wds_config, (transform, transform), epoch=0, tokenizer=tokenizer)
elif name == "cc12m_3m":
# TODO: Debug if these configs are correct!!!! Not fully sure how the webdataset sharded dataloader should work.
wds_config.train_data = config.data.raw_data_dir + "/cc3m-train-{0000..0575}.tar"
wds_config.val_data = config.data.raw_data_dir + "/cc3m-validation-{0000..0015}.tar"
return get_data(wds_config, (transform, transform), epoch=0, tokenizer=tokenizer)
elif name == "facecaption":
if getattr(config.data, "webdataset_iterable", False):
wds_config.train_data = "/grogu/user/mprabhud/data/diffusion/facecaption/{00000..00001}.tar"
wds_config.val_data = "/grogu/user/mprabhud/data/diffusion/facecaption/{00000..00001}.tar"
return get_data(wds_config, (transform, transform), epoch=0, tokenizer=tokenizer)
elif getattr(config.data, "webdataset_indexed", False) is False:
return get_webdataset_indexed(config, tokenizer, transform, cond_transform, n_samples, name, should_tokenize=True)
else:
raise Exception("Unknown webdataset type")
# hf webdataset
if name == "pixparse/cc12m-wds":
extra_kwargs["data_dir"] = config.data.raw_data_dir
if name == "generated_images":
extra_kwargs["data_files"] = {"train": getattr(config.data, "parquet_path", None)}
if name != "imagefolder":
rprint(f"Loading dataset {name}, split={split}, streaming={streaming}, cache_dir={cache_dir}, extra_kwargs={extra_kwargs}, dynamic={dynamic}")
load_map = {"pixparse/cc12m-wds": "webdataset", "laion400m": "webdataset", "generated_images": "parquet"}
load_name = load_map.get(name, name)
if streaming is False:
extra_kwargs["num_proc"] = 16
if config.data.tokenize_vqvae_in_dataloader:
full_cache_path = get_vqvae_dataloader(config, name, split)
_ret = load_vqvae_from_cache(config, full_cache_path)
if _ret is not None: return _ret
from model import get_image_batch, get_vae
rank = get_rank()
vae = get_vae(config, device="cpu").eval()
vae.to(f"cuda:{rank}")
def tokenize_vqvae(batch):
device = f"cuda:{rank}"
img_input_ids = get_image_batch(config, vae, batch, device)
batch.pop("img")
batch["img_input_ids"] = img_input_ids
return batch
if config.data.keep_hf_dataset_in_memory:
extra_kwargs["keep_in_memory"] = True
gprint(f"WARNING!!!! Keeping dataset in memory")
if name == "geneval":
def create_blank_image():
return Image.new("RGB", (resolution, resolution), color=(255, 255, 255))
# https://github.com/djghosh13/geneval/blob/main/prompts/generation_prompts.txt
prompts_path = Path.home() / ".cache" / "unidisc" / "geneval_generation_prompts.txt"
if not prompts_path.exists():
prompts_path.parent.mkdir(parents=True, exist_ok=True)
import urllib.request
urllib.request.urlretrieve(
"https://raw.githubusercontent.com/djghosh13/geneval/main/prompts/generation_prompts.txt",
prompts_path
)
with open(prompts_path, "r") as f:
captions = [line.strip() for line in f.readlines()]
dataset = Dataset.from_dict({
"caption": captions,
"image": [
create_blank_image() for i in range(len(captions))
],
})
elif name == "MJHQ":
def create_blank_image():
return Image.new("RGB", (resolution, resolution), color=(255, 255, 255))
prompts_path = Path.home() / ".cache" / "unidisc" / "MJHQ_meta_data.json"
if not prompts_path.exists():
prompts_path.parent.mkdir(parents=True, exist_ok=True)
import urllib.request
urllib.request.urlretrieve(
"https://huggingface.co./datasets/playgroundai/MJHQ-30K/resolve/main/meta_data.json",
prompts_path
)
with open(prompts_path, "r") as f:
data = json.load(f)
captions = [item["prompt"] for item in data.values()]
dataset = Dataset.from_dict({
"caption": captions,
"image": [
create_blank_image() for i in range(len(captions))
],
})
else:
dataset = datasets.load_dataset(load_name, split=split, streaming=streaming, cache_dir=cache_dir, **extra_kwargs)
dataset_keys = {
"cassiekang/cub200_dataset": ("image", "text"),
"Andron00e/CUB200-custom": ("image",),
"nlphuji/flickr30k": ("image", "caption"),
"ILSVRC/imagenet-1k": ("image", "label"),
"richwardle/reduced-imagenet": ("image",),
"tglcourse/lsun_church_train": ("image",),
"imagefolder": ("image",),
"pixparse/cc12m-wds": ("jpg", "txt"),
"pravsels/FFHQ_1024": ("image",),
"pravsels/SFHQ_256": ("image",),
"jxie/celeba-hq": ("image",),
"tglcourse/lsun_church_train": ("image",),
"pouya-haghi/imagenet-subset": ("image",),
"DeepLearner101/ImageNetSubsetValidate": ("image",),
"PixArt-alpha/SAM-LLaVA-Captions10M": ("__key__", "txt"),
"generated_images": ("__key__", "caption"),
"laion/clevr-webdataset": ("jpg","txt"),
"pcuenq/lsun-bedrooms": ("image",),
"facebook/winoground": ("image_0", "image_1", "caption_0", "caption_1"),
"sayakpaul/coco-30-val-2014": ("image", "caption"),
"geneval": ("image", "caption"),
"MJHQ": ("image", "caption"),
}
from dataloader import tokenize_text
def preprocess_images(example, index: typing.Optional[typing.Any] = None):
data = {}
if dataset_keys[name][0] == "__key__":
images = []
is_valid = []
for key, _image_path in zip(example[dataset_keys[name][0]], example["image_path"]):
img_path = (
(Path(config.data.raw_data_dir) / key).with_suffix(".jpg") if not key.endswith(".jpg") else (Path(config.data.raw_data_dir) / key)
)
allow_relative = False
if Path(_image_path).exists() and Path(_image_path).stat().st_size > 0:
img = Image.open(_image_path)
is_valid.append(True)
elif allow_relative and img_path.exists() and img_path.stat().st_size > 0:
img = Image.open(img_path)
is_valid.append(True)
else:
img = Image.new("RGB", (resolution, resolution), color=(255, 255, 255))
is_valid.append(False)
images.append(img)
data["is_valid"] = is_valid
if sum(data["is_valid"]) < len(data["is_valid"]):
gprint(f"WARNING!!! Found {len(data['is_valid']) - sum(data['is_valid'])} invalid images")
else:
images = [image.convert("RGB") for image in example[dataset_keys[name][0]]]
data["img"] = [transform(image) for image in images]
if cond_resolution is not None:
data["cond_img"] = [cond_transform(image) for image in images]
if index is not None:
data["idx"] = index
if "idx" in example:
data["idx"] = example["idx"]
if dynamic and dataset_keys[name][0] is not None:
data["img"] = torch.stack(data["img"])
if "label" in example:
data["label"] = example["label"]
if (unified_model or getattr(config.data, "txt_only", False)) and not getattr(config.data, "disable_text_modality", False):
tokenizer.padding_side = "right"
tokenizer.truncation_side = "right"
if name == "facebook/winoground":
caption_0 = example["caption_0"]
caption_1 = example["caption_1"]
img_0 = example["image_0"]
img_1 = example["image_1"]
# tokenize and store captions separately
tokens_0 = tokenize_text(tokenizer, block_size, caption_0)
tokens_1 = tokenize_text(tokenizer, block_size, caption_1)
data["caption_0_input_ids"] = tokens_0["input_ids"]
data["caption_0_attention_mask"] = tokens_0["attention_mask"].float()
data["caption_1_input_ids"] = tokens_1["input_ids"]
data["caption_1_attention_mask"] = tokens_1["attention_mask"].float()
# convert img_0 and img_1 which are lists of PIL images to tensors
# convert some rgba pil images to rgb
data["img_0"] = torch.stack([transform(img.convert("RGB")) for img in img_0])
data["img_1"] = torch.stack([transform(img.convert("RGB")) for img in img_1])
else:
text_data = example[dataset_keys[name][1]]
if isinstance(text_data[0], list):
# Flickr has a list of captions for each image
text_data = [random.choice(_data) for _data in text_data]
tokens = tokenize_text(tokenizer, block_size, text_data)
data["input_ids"] = tokens["input_ids"]
data["attention_mask"] = tokens["attention_mask"].float()
return data
if precache is False:
tokenized_dataset = dataset.with_transform(preprocess_images)
else:
extra_kwargs = dict()
if streaming is False:
extra_kwargs["load_from_cache_file"] = True
else:
if name == "pixparse/cc12m-wds":
extra_kwargs["remove_columns"] = ["__key__", "jpg", "__url__", "json", "txt"]
elif name == "ILSVRC/imagenet-1k":
extra_kwargs["remove_columns"] = ["image"]
tokenized_dataset = dataset.map(preprocess_images, batched=True, with_indices=True, **extra_kwargs)
allowed_column_names = ["img", "input_ids", "attention_mask", "tokens", "text", "idx"]
current_column_names = tokenized_dataset.column_names
if current_column_names is not None:
for column_name in current_column_names:
if column_name not in allowed_column_names:
tokenized_dataset = tokenized_dataset.remove_columns(column_name)
if n_duplicate is not None:
tokenized_dataset = datasets.concatenate_datasets([tokenized_dataset] * n_duplicate)
ret = tokenized_dataset if dynamic else tokenized_dataset.with_format("torch")
if isinstance(dataset, torch.utils.data.IterableDataset) or "cc12m" in name:
ret = ResilientIterableDatasetWrapper(ret)
if config.data.tokenize_vqvae_in_dataloader:
assert config.data.force_mp_spawn
ret = ret.shard(num_shards=get_world_size(), index=get_rank(), contiguous=True, keep_in_memory=True)
gprint(f"Rank {rank} has {len(ret)} samples. World size is {get_world_size()}")
ret = ret.map(tokenize_vqvae, batch_size=getattr(config.data, "vqvae_batch_size", 128), batched=True, keep_in_memory=True)
ret.reset_format()
allowed_column_names = ["img_input_ids"]
map_column_list = getattr(config.data, "map_columns", None)
if map_column_list is not None:
for old_column_name, new_column_name in map_column_list.items():
ret = ret.rename_column(old_column_name, new_column_name)
if getattr(config.data, "allow_label", False):
allowed_column_names.append("label")
if getattr(config.data, "allowed_columns_vqvae_dataloader", None):
allowed_column_names.extend(list(config.data.allowed_columns_vqvae_dataloader))
current_column_names = ret.column_names
if current_column_names is not None:
for column_name in current_column_names:
if column_name not in allowed_column_names:
ret = ret.remove_columns(column_name)
rank_cache_path = full_cache_path / f"rank_{rank}"
gprint(f"Rank {rank} has saved to {rank_cache_path} with {len(ret)} samples")
ret.save_to_disk(rank_cache_path)
barrier()
gprint(f"Rank {rank} has finished saving to {rank_cache_path}. Sleeping for a bit. You may want to Ctrl+C now")
time.sleep(60 * 30)
ret = load_vqvae_from_cache(config, full_cache_path)
gprint(f"Rank {rank} has finished loading from file: {rank_cache_path}")
return ret
|