Spaces:
Running
Running
File size: 1,773 Bytes
18b52d2 88f3c8e 18b52d2 88f3c8e 3894fc4 627bdef 18b52d2 88f3c8e 18b52d2 88f3c8e 3894fc4 88f3c8e 3894fc4 88f3c8e 18b52d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
#from smolagents import DuckDuckGoSearchTool
#from smolagents import Tool
from langchain_community.tools import DuckDuckGoSearchRun
import random
from huggingface_hub import list_models
from langchain.tools import Tool
# Initialize the DuckDuckGo search tool
search_tool = DuckDuckGoSearchRun()
def get_weather_info(location: str) -> str:
"""Fetches dummy weather information for a given location."""
# Dummy weather data
weather_conditions = [
{"condition": "Rainy", "temp_c": 15},
{"condition": "Clear", "temp_c": 25},
{"condition": "Windy", "temp_c": 20}
]
# Randomly select a weather condition
data = random.choice(weather_conditions)
return f"Weather in {location}: {data['condition']}, {data['temp_c']}°C"
# Initialize the tool
weather_info_tool = Tool(
name="get_weather_info",
func=get_weather_info,
description="Fetches dummy weather information for a given location."
)
def get_hub_stats(author: str) -> str:
"""Fetches the most downloaded model from a specific author on the Hugging Face Hub."""
try:
# List models from the specified author, sorted by downloads
models = list(list_models(author=author, sort="downloads", direction=-1, limit=1))
if models:
model = models[0]
return f"The most downloaded model by {author} is {model.id} with {model.downloads:,} downloads."
else:
return f"No models found for author {author}."
except Exception as e:
return f"Error fetching models for {author}: {str(e)}"
# Initialize the tool
hub_stats_tool = Tool(
name="get_hub_stats",
func=get_hub_stats,
description="Fetches the most downloaded model from a specific author on the Hugging Face Hub."
) |