|
import gradio as gr |
|
from transformers import pipeline |
|
from diffusers import StableDiffusionPipeline |
|
import torch |
|
|
|
|
|
text2text = pipeline("text-generation", model="openai-community/gpt2-large") |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
diffusion = StableDiffusionPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16 if device == "cuda" else torch.float32 |
|
).to(device) |
|
|
|
|
|
def generate(text): |
|
|
|
prompt = f"Describe de forma visual y detallada en español: {text}" |
|
improved = text2text(prompt, max_length=60, do_sample=True)[0]["generated_text"] |
|
improved_cleaned = improved.replace("Describe de forma visual y detallada en español:", "").strip() |
|
print(f"Texto mejorado: {improved_cleaned}") |
|
|
|
|
|
image = diffusion(improved_cleaned).images[0] |
|
return improved_cleaned, image |
|
|
|
|
|
with gr.Blocks(theme=gr.themes.Base()) as demo: |
|
gr.Markdown("# 🎨 Generador de Imágenes desde Texto en Español") |
|
with gr.Row(): |
|
with gr.Column(): |
|
inp = gr.Textbox(label="Introduce una descripción breve", placeholder="Ej: Persona mayor sentada en un banco") |
|
btn = gr.Button("Generar imagen") |
|
with gr.Column(): |
|
out_text = gr.Textbox(label="Texto mejorado para la imagen") |
|
out_img = gr.Image(label="Imagen generada") |
|
|
|
btn.click(fn=generate, inputs=inp, outputs=[out_text, out_img]) |
|
|
|
demo.launch() |
|
|