Spaces:
Runtime error
Runtime error
File size: 8,206 Bytes
d24e7ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
# Copyright (c) 2023-2024 DeepSeek.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
# the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
from attrdict import AttrDict
from einops import rearrange
import torch
from transformers.configuration_utils import PretrainedConfig
from transformers import (
AutoConfig,
AutoModelForCausalLM,
PreTrainedModel,
LlamaConfig,
LlamaForCausalLM,
)
from transformers.models.llama.modeling_llama import LlamaRMSNorm
from janus.janusflow.models.clip_encoder import CLIPVisionTower
from janus.janusflow.models.uvit import ShallowUViTEncoder, ShallowUViTDecoder
import torch.nn as nn
def model_name_to_cls(cls_name):
if "CLIPVisionTower" in cls_name:
cls = CLIPVisionTower
elif "ShallowUViTEncoder" in cls_name:
cls = ShallowUViTEncoder
elif "ShallowUViTDecoder" in cls_name:
cls = ShallowUViTDecoder
else:
raise ValueError(f"class_name {cls_name} is invalid.")
return cls
class VisionUnderstandEncoderConfig(PretrainedConfig):
model_type = "vision_und_enc"
cls: str = ""
params: AttrDict = {}
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.cls = kwargs.get("cls", "")
if not isinstance(self.cls, str):
self.cls = self.cls.__name__
self.params = AttrDict(kwargs.get("params", {}))
class VisionGenerationEncoderConfig(PretrainedConfig):
model_type = "vision_gen_enc"
cls: str = ""
params: AttrDict = {}
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.cls = kwargs.get("cls", "")
if not isinstance(self.cls, str):
self.cls = self.cls.__name__
self.params = AttrDict(kwargs.get("params", {}))
class VisionGenerationDecoderConfig(PretrainedConfig):
model_type = "vision_gen_dec"
cls: str = ""
params: AttrDict = {}
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.cls = kwargs.get("cls", "")
if not isinstance(self.cls, str):
self.cls = self.cls.__name__
self.params = AttrDict(kwargs.get("params", {}))
class MultiModalityConfig(PretrainedConfig):
model_type = "multi_modality"
vision_und_enc_config: VisionUnderstandEncoderConfig
language_config: LlamaConfig
def __init__(self, **kwargs):
super().__init__(**kwargs)
vision_und_enc_config = kwargs.get("vision_und_enc_config", {})
self.vision_und_enc_config = VisionUnderstandEncoderConfig(
**vision_und_enc_config
)
vision_gen_enc_config = kwargs.get("vision_gen_enc_config", {})
self.vision_gen_enc_config = VisionGenerationEncoderConfig(
**vision_gen_enc_config
)
vision_gen_dec_config = kwargs.get("vision_gen_dec_config", {})
self.vision_gen_dec_config = VisionGenerationDecoderConfig(
**vision_gen_dec_config
)
language_config = kwargs.get("language_config", {})
if isinstance(language_config, LlamaConfig):
self.language_config = language_config
else:
self.language_config = LlamaConfig(**language_config)
class MultiModalityPreTrainedModel(PreTrainedModel):
config_class = MultiModalityConfig
base_model_prefix = "multi_modality"
_no_split_modules = []
_skip_keys_device_placement = "past_key_values"
class MultiModalityCausalLM(MultiModalityPreTrainedModel):
def __init__(self, config: MultiModalityConfig):
super().__init__(config)
# vision understanding encoder
vision_und_enc_config = config.vision_und_enc_config
vision_und_enc_cls = model_name_to_cls(vision_und_enc_config.cls)
self.vision_und_enc_model = vision_und_enc_cls(**vision_und_enc_config.params)
# vision understanding aligner
self.vision_und_enc_aligner = nn.Linear(1024, 2048, bias=True)
# begin of understanding embedding
self.beg_of_und_embed = nn.Parameter(torch.zeros(1, 2048))
# vision generation encoder
vision_gen_enc_config = config.vision_gen_enc_config
vision_gen_enc_cls = model_name_to_cls(vision_gen_enc_config.cls)
self.vision_gen_enc_model = vision_gen_enc_cls(**vision_gen_enc_config.params)
# vision generation encoder aligner
self.vision_gen_enc_aligner = nn.Linear(768, 2048, bias=True)
# vision generation decoder
vision_gen_dec_config = config.vision_gen_dec_config
vision_gen_dec_cls = model_name_to_cls(vision_gen_dec_config.cls)
self.vision_gen_dec_model = vision_gen_dec_cls(**vision_gen_dec_config.params)
# language model
language_config = config.language_config
self.language_model = LlamaForCausalLM(language_config)
# vision generation decoder aligner
self.vision_gen_dec_aligner_norm = LlamaRMSNorm(
2048, eps=language_config.rms_norm_eps
)
self.vision_gen_dec_aligner = nn.Linear(2048, 768, bias=True)
def prepare_inputs_embeds(
self,
input_ids: torch.LongTensor,
pixel_values: torch.FloatTensor,
images_seq_mask: torch.LongTensor,
images_emb_mask: torch.LongTensor,
**kwargs,
):
"""
Args:
input_ids (torch.LongTensor): [b, T]
pixel_values (torch.FloatTensor): [b, n_images, 3, h, w]
images_seq_mask (torch.BoolTensor): [b, T]
images_emb_mask (torch.BoolTensor): [b, n_images, n_image_tokens]
assert torch.sum(images_seq_mask) == torch.sum(images_emb_mask)
Returns:
input_embeds (torch.Tensor): [b, T, D]
"""
bs, n = pixel_values.shape[0:2]
images = rearrange(pixel_values, "b n c h w -> (b n) c h w")
# [b x n, T2, D]
images_embeds = self.vision_und_enc_model(images)
images_embeds = self.vision_und_enc_aligner(images_embeds)
# print(images_embeds.shape, self.beg_of_und_embed.shape, images_seq_mask.shape, input_ids.shape)
beg_of_und_embed = self.beg_of_und_embed[0].detach().clone()
images_embeds = torch.cat(
[
beg_of_und_embed.view(1, 1, -1).repeat(images_embeds.shape[0], 1, 1),
images_embeds,
],
dim=1,
)
# [b x n, T2, D] -> [b, n x T2, D]
images_embeds = rearrange(images_embeds, "(b n) t d -> b (n t) d", b=bs, n=n)
# [b, n, T2] -> [b, n x T2]
images_emb_mask = rearrange(images_emb_mask, "b n t -> b (n t)")
# [b, T, D]
input_ids[input_ids < 0] = 0 # ignore the image embeddings
inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
# replace with the image embeddings
inputs_embeds[images_seq_mask] = images_embeds[images_emb_mask]
return inputs_embeds
AutoConfig.register("vision_und_enc", VisionUnderstandEncoderConfig)
AutoConfig.register("vision_gen_enc", VisionGenerationEncoderConfig)
AutoConfig.register("vision_gen_dec", VisionGenerationDecoderConfig)
AutoConfig.register("multi_modality", MultiModalityConfig)
AutoModelForCausalLM.register(MultiModalityConfig, MultiModalityCausalLM)
|