File size: 8,225 Bytes
8322301
 
 
 
d1cc8ad
 
8322301
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1cc8ad
 
8322301
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1cc8ad
 
 
 
 
8322301
 
 
 
 
 
 
 
 
d1cc8ad
8322301
d1cc8ad
 
 
 
 
 
8322301
d1cc8ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8322301
 
 
 
d1cc8ad
 
 
 
 
 
 
8322301
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1cc8ad
8322301
 
 
d1cc8ad
 
 
8322301
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1cc8ad
 
 
 
8322301
d1cc8ad
 
8322301
 
 
 
 
 
 
 
 
d1cc8ad
8322301
d1cc8ad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
#img_gen_modal.py
import modal
import random
import io
from config.config import api_token 
from config.prompts import prompts
from config.models import models_modal
import os
import gradio as gr
import torch
import sentencepiece
import torch
from huggingface_hub import login
from transformers import AutoTokenizer
import random
from datetime import datetime
from diffusers.callbacks import SDXLCFGCutoffCallback
from diffusers import FluxPipeline
from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline, AutoencoderTiny, AutoencoderKL, DiffusionPipeline, FluxTransformer2DModel, GGUFQuantizationConfig
from PIL import Image
from src.check_dependecies import check_dependencies
import numpy as np
from src.prompt_gen import prompt_gen


MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

CACHE_DIR = "/model_cache"

# Define the Modal image
image = (
    modal.Image.from_registry("nvidia/cuda:12.2.0-devel-ubuntu22.04", add_python="3.9")
                .pip_install_from_requirements("requirements.txt")
    #modal.Image.debian_slim(python_version="3.9")  # Base image
    # .apt_install(
    #     "git",
    # )
    # .pip_install(
    #     "diffusers",
    #     f"git+https://github.com/huggingface/transformers.git"
    # )
    .env(
        {
            "HF_HUB_ENABLE_HF_TRANSFER": "1", "HF_HOME": "HF_HOME", "HF_HUB_CACHE": CACHE_DIR
        }
    )
)

# Create a Modal app
app = modal.App("LS-img-gen-modal", image=image)
with image.imports():
    import os

flux_model_vol = modal.Volume.from_name("flux-model-vol", create_if_missing=True)  # Reference your volume

# GPU FUNCTION
@app.function(volumes={"/data": flux_model_vol},
              secrets=[modal.Secret.from_name("huggingface-token")],
              gpu="L40S",
              timeout = 300
              )
# MAIN GENERATE IMAGE FUNCTION
def generate_image_gpu(
        adventurer_id,
        #prompt_alias, 
        #character_dropdown,
        scene_dropdown,
        #model_alias,
        custom_prompt, 
        height=360, 
        width=640, 
        num_inference_steps=20, 
        guidance_scale=2.0, 
        seed=-1):
    # Find the selected prompt and model
    print("Hello from LS_img_gen!")

    #check_dependencies()

    print ("Sending to prompt gen")
    adventurer, prompt = prompt_gen(adventurer_id, scene_dropdown)
    
    # Print the original prompt and dynamic values for debugging
    print("Original Prompt:")
    print(prompt)

    print("Defining advanturer variables")
    id = adventurer['id']
    name = adventurer['name']
    weapon_equipment = adventurer['weapon']
    head_equipment = adventurer['head']
    hand_equipment = adventurer['hand']
    chest_equipment = adventurer['chest']
    waist_equipment = adventurer['waist']
    foot_equipment = adventurer['foot']
    gold_equipment = adventurer['gold']
    beast_last_battle = adventurer['beast']

    print("Loading Model")
    model_alias = "FLUX.1-dev"
    try:
        #prompt = next(p for p in prompts if p["alias"] == prompt_alias)["text"]
        #model_name = next(m for m in models_modal if m["alias"] == model_alias)["name"]
        model_name = model_alias
    except StopIteration:
        return None, "ERROR: Invalid prompt or model selected."


    # # Append the custom character (if provided)
    # if character_dropdown == "Wizard":
    #     prompt += f" A wizard combats using powerful magic against the {beast_last_battle}"
    # elif character_dropdown == "Warrior":
    #     prompt += f" A warrior combats using his weapons against the {beast_last_battle}"
    # else:
    #     pass

   # Append the custom prompt (if provided)
    if custom_prompt and len(custom_prompt.strip()) > 0:
        prompt += " " + custom_prompt.strip()

    # Print the formatted prompt for debugging
    print("\nFormatted Prompt:")
    print(prompt)

    # Randomize the seed if needed
    if seed == -1:
        seed = random.randint(0, 1000000)

    # HF LOGIN 
    print("Initializing HF TOKEN")
    print (api_token)
    # login(token=api_token)
    # print("model_name:")
    # print(model_name)


    # Use absolute path with leading slash
    model_path = f"/data/{model_name}"  # Changed from "data/" to "/data/"
    print(f"Loading model from local path: {model_path}")
    
    # Debug: Check if the directory exists and list its contents
    if os.path.exists(model_path):
        print("Directory exists. Contents:")
        for item in os.listdir(model_path):
            print(f" - {item}")
    else:
        print(f"Directory does not exist: {model_path}")
        print("Contents of /data:")
        print(os.listdir("/data"))
    # CHECK FOR TORCH USING CUDA
    print("CHECK FOR TORCH USING CUDA")
    print(f"CUDA available: {torch.cuda.is_available()}")
    if torch.cuda.is_available():
        print("inside if")
        print(f"CUDA device count: {torch.cuda.device_count()}")
        print(f"Current device: {torch.cuda.current_device()}")
        print(f"Device name: {torch.cuda.get_device_name(torch.cuda.current_device())}")

    try:
        print("-----INITIALIZING PIPE-----")
        pipe = FluxPipeline.from_pretrained(
            model_path,
            torch_dtype=torch.bfloat16,
            #torch_dtype=torch.float16,
            #torch_dtype=torch.float32,
            #vae=taef1,
            local_files_only=False,
        )
        #torch.cuda.empty_cache()

        if model_alias == "Flux-Midjourney-Mix2-LoRA":
            pipe.load_lora_weights("/data/Flux-Midjourney-Mix2-LoRA")

        if torch.cuda.is_available():
            print("CUDA available")
            print("using gpu")
            pipe = pipe.to("cuda")
            pipe_message = "CUDA"
            #pipe.enable_model_cpu_offload()  # official recommended method but is running slower w it
        else:
            print("CUDA not available")
            print("using cpu")
            pipe = pipe.to("cpu")
            pipe_message = "CPU"
        print(f"-----{pipe_message} PIPE INITIALIZED-----")
        print(f"Using device: {pipe.device}")
    except Exception as e:
        print(f"Detailed error: {str(e)}")
        return None, f"ERROR: Failed to initialize PIPE2. Details: {e}"

    ########## SENDING IMG GEN TO PIPE - WORKING CODE ##########
    try:
        print("-----SENDING IMG GEN TO PIPE-----")
        print("-----HOLD ON-----")   
        image = pipe(
            prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            max_sequence_length=512,
            #callback_on_step_end=decode_tensors,
            #callback_on_step_end_tensor_inputs=["latents"],
            # seed=seed
        ).images[0]
        #############################################################

        print("-----IMAGE GENERATED SUCCESSFULLY!-----")
        print(image)  
                
    except Exception as e:
        return f"ERROR: Failed to initialize InferenceClient. Details: {e}"
        
    try:
        # Save the image with a timestamped filename
        print("-----SAVING-----", image)

        message = f"Image generated successfully! Call the banners! \n\n=====ADVENTURER GENERATED===== \nID: {id}\nNAME: {name}\nWEAPON: {weapon_equipment}\nHEAD: {head_equipment}\nHAND: {hand_equipment}\nCHEST: {chest_equipment}\nWAIST: {waist_equipment}\nFOOT: {foot_equipment}\nGOLD: {gold_equipment}\nLAST BATTLE BEAST: {beast_last_battle}"

        file_name_extension = f"{id}_{beast_last_battle.replace(' ', '_').lower()}"

        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        
        output_filename = f"/data/LS_images/{timestamp}_{seed}_{model_alias.replace(' ', '_').lower()}_{scene_dropdown.replace(' ', '_').lower()}_{file_name_extension.replace(' ', '_').lower()}.png"
        try:
            image.save(output_filename)
        except Exception as e:
            return None, f"ERROR: Failed to save image. Details: {e}"
        print("-----DONE!-----")
        print("-----CALL THE BANNERS!-----")

    except Exception as e:
        print(f"ERROR: Failed to save image. Details: {e}")

    # Return the filename and success message
    return image, message