Spaces:
Runtime error
Runtime error
from fastapi import FastAPI, HTTPException | |
from transformers import AutoModel, AutoTokenizer | |
import gradio as gr | |
# Inicializar FastAPI | |
app = FastAPI() | |
# Cargar el modelo y el tokenizador desde Hugging Face | |
model_name = "ancerlop/ToxicBERTMultilabelTextClassification" | |
model = AutoModel.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# Definir funci贸n de predicci贸n | |
def predict(text): | |
inputs = tokenizer(text, return_tensors="pt") | |
outputs = model(**inputs) | |
return outputs.logits | |
# Crear una interfaz Gradio | |
iface = gr.Interface( | |
fn=predict, | |
inputs=gr.inputs.Textboxbox(), | |
outputs=gr.outputs.Label(num_top_classes=5), | |
live=True, | |
title="Modelo de Clasificaci贸n de Texto", | |
description="Este modelo clasifica texto en diferentes categor铆as." | |
) | |
# Definir una ruta en FastAPI para la API | |
def predict_api(text: str): | |
try: | |
result = predict(text) | |
return {"predictions": result.tolist()} | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |
# Montar Gradio en FastAPI | |
def gradio_interface(): | |
return iface.launch() | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port=8000) | |