Spaces:
Running
on
Zero
Running
on
Zero
积极的屁孩
commited on
Commit
·
cba1c8b
1
Parent(s):
3b944a1
download before infer
Browse files
app.py
CHANGED
@@ -12,6 +12,17 @@ import subprocess
|
|
12 |
import re
|
13 |
import spaces
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
def install_espeak():
|
16 |
"""Detect and install espeak-ng dependency"""
|
17 |
try:
|
@@ -150,6 +161,10 @@ from models.vc.vevo.vevo_utils import VevoInferencePipeline, save_audio, load_wa
|
|
150 |
|
151 |
# Download and setup config files
|
152 |
def setup_configs():
|
|
|
|
|
|
|
|
|
153 |
config_path = "models/vc/vevo/config"
|
154 |
os.makedirs(config_path, exist_ok=True)
|
155 |
|
@@ -175,6 +190,8 @@ def setup_configs():
|
|
175 |
subprocess.run(["cp", file_data, file_path])
|
176 |
except Exception as e:
|
177 |
print(f"Error downloading config file {file}: {e}")
|
|
|
|
|
178 |
|
179 |
setup_configs()
|
180 |
|
@@ -192,54 +209,102 @@ def get_pipeline(pipeline_type):
|
|
192 |
# Initialize pipeline based on the required pipeline type
|
193 |
if pipeline_type == "style" or pipeline_type == "voice":
|
194 |
# Download Content Tokenizer
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
|
205 |
# Download Content-Style Tokenizer
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
|
214 |
# Download Autoregressive Transformer
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
|
224 |
# Download Flow Matching Transformer
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
|
234 |
# Download Vocoder
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
|
244 |
# Initialize pipeline
|
245 |
inference_pipeline = VevoInferencePipeline(
|
@@ -256,33 +321,62 @@ def get_pipeline(pipeline_type):
|
|
256 |
|
257 |
elif pipeline_type == "timbre":
|
258 |
# Download Content-Style Tokenizer (only needed for timbre)
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
|
267 |
# Download Flow Matching Transformer
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
|
277 |
# Download Vocoder
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
|
287 |
# Initialize pipeline
|
288 |
inference_pipeline = VevoInferencePipeline(
|
@@ -296,43 +390,82 @@ def get_pipeline(pipeline_type):
|
|
296 |
|
297 |
elif pipeline_type == "tts":
|
298 |
# Download Content-Style Tokenizer
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
|
307 |
# Download Autoregressive Transformer (TTS specific)
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
|
317 |
# Download Flow Matching Transformer
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
326 |
|
327 |
# Download Vocoder
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
336 |
|
337 |
# Initialize pipeline
|
338 |
inference_pipeline = VevoInferencePipeline(
|
@@ -761,6 +894,89 @@ def vevo_tts(text, ref_wav, timbre_ref_wav=None, style_ref_text=None, src_langua
|
|
761 |
traceback.print_exc()
|
762 |
raise e
|
763 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
764 |
# Create Gradio interface
|
765 |
with gr.Blocks(title="Vevo: Controllable Zero-Shot Voice Imitation with Self-Supervised Disentanglement") as demo:
|
766 |
gr.Markdown("# Vevo: Controllable Zero-Shot Voice Imitation with Self-Supervised Disentanglement")
|
|
|
12 |
import re
|
13 |
import spaces
|
14 |
|
15 |
+
# 创建一个全局变量来跟踪已下载的资源
|
16 |
+
downloaded_resources = {
|
17 |
+
"configs": False,
|
18 |
+
"tokenizer_vq32": False,
|
19 |
+
"tokenizer_vq8192": False,
|
20 |
+
"ar_Vq32ToVq8192": False,
|
21 |
+
"ar_PhoneToVq8192": False,
|
22 |
+
"fmt_Vq8192ToMels": False,
|
23 |
+
"vocoder": False
|
24 |
+
}
|
25 |
+
|
26 |
def install_espeak():
|
27 |
"""Detect and install espeak-ng dependency"""
|
28 |
try:
|
|
|
161 |
|
162 |
# Download and setup config files
|
163 |
def setup_configs():
|
164 |
+
if downloaded_resources["configs"]:
|
165 |
+
print("Config files already downloaded, skipping...")
|
166 |
+
return
|
167 |
+
|
168 |
config_path = "models/vc/vevo/config"
|
169 |
os.makedirs(config_path, exist_ok=True)
|
170 |
|
|
|
190 |
subprocess.run(["cp", file_data, file_path])
|
191 |
except Exception as e:
|
192 |
print(f"Error downloading config file {file}: {e}")
|
193 |
+
|
194 |
+
downloaded_resources["configs"] = True
|
195 |
|
196 |
setup_configs()
|
197 |
|
|
|
209 |
# Initialize pipeline based on the required pipeline type
|
210 |
if pipeline_type == "style" or pipeline_type == "voice":
|
211 |
# Download Content Tokenizer
|
212 |
+
content_tokenizer_ckpt_path = ""
|
213 |
+
if not downloaded_resources["tokenizer_vq32"]:
|
214 |
+
local_dir = snapshot_download(
|
215 |
+
repo_id="amphion/Vevo",
|
216 |
+
repo_type="model",
|
217 |
+
cache_dir="./ckpts/Vevo",
|
218 |
+
allow_patterns=["tokenizer/vq32/*"],
|
219 |
+
)
|
220 |
+
content_tokenizer_ckpt_path = os.path.join(
|
221 |
+
local_dir, "tokenizer/vq32/hubert_large_l18_c32.pkl"
|
222 |
+
)
|
223 |
+
downloaded_resources["tokenizer_vq32"] = True
|
224 |
+
print("Downloaded Content Tokenizer (vq32)")
|
225 |
+
else:
|
226 |
+
print("Content Tokenizer (vq32) already downloaded, skipping...")
|
227 |
+
content_tokenizer_ckpt_path = os.path.join(
|
228 |
+
"./ckpts/Vevo/snapshots/amphion/Vevo", "tokenizer/vq32/hubert_large_l18_c32.pkl"
|
229 |
+
)
|
230 |
|
231 |
# Download Content-Style Tokenizer
|
232 |
+
content_style_tokenizer_ckpt_path = ""
|
233 |
+
if not downloaded_resources["tokenizer_vq8192"]:
|
234 |
+
local_dir = snapshot_download(
|
235 |
+
repo_id="amphion/Vevo",
|
236 |
+
repo_type="model",
|
237 |
+
cache_dir="./ckpts/Vevo",
|
238 |
+
allow_patterns=["tokenizer/vq8192/*"],
|
239 |
+
)
|
240 |
+
content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192")
|
241 |
+
downloaded_resources["tokenizer_vq8192"] = True
|
242 |
+
print("Downloaded Content-Style Tokenizer (vq8192)")
|
243 |
+
else:
|
244 |
+
print("Content-Style Tokenizer (vq8192) already downloaded, skipping...")
|
245 |
+
content_style_tokenizer_ckpt_path = os.path.join(
|
246 |
+
"./ckpts/Vevo/snapshots/amphion/Vevo", "tokenizer/vq8192"
|
247 |
+
)
|
248 |
|
249 |
# Download Autoregressive Transformer
|
250 |
+
ar_ckpt_path = ""
|
251 |
+
if not downloaded_resources["ar_Vq32ToVq8192"]:
|
252 |
+
local_dir = snapshot_download(
|
253 |
+
repo_id="amphion/Vevo",
|
254 |
+
repo_type="model",
|
255 |
+
cache_dir="./ckpts/Vevo",
|
256 |
+
allow_patterns=["contentstyle_modeling/Vq32ToVq8192/*"],
|
257 |
+
)
|
258 |
+
ar_cfg_path = "./models/vc/vevo/config/Vq32ToVq8192.json"
|
259 |
+
ar_ckpt_path = os.path.join(local_dir, "contentstyle_modeling/Vq32ToVq8192")
|
260 |
+
downloaded_resources["ar_Vq32ToVq8192"] = True
|
261 |
+
print("Downloaded Autoregressive Transformer (Vq32ToVq8192)")
|
262 |
+
else:
|
263 |
+
print("Autoregressive Transformer (Vq32ToVq8192) already downloaded, skipping...")
|
264 |
+
ar_cfg_path = "./models/vc/vevo/config/Vq32ToVq8192.json"
|
265 |
+
ar_ckpt_path = os.path.join(
|
266 |
+
"./ckpts/Vevo/snapshots/amphion/Vevo", "contentstyle_modeling/Vq32ToVq8192"
|
267 |
+
)
|
268 |
|
269 |
# Download Flow Matching Transformer
|
270 |
+
fmt_ckpt_path = ""
|
271 |
+
if not downloaded_resources["fmt_Vq8192ToMels"]:
|
272 |
+
local_dir = snapshot_download(
|
273 |
+
repo_id="amphion/Vevo",
|
274 |
+
repo_type="model",
|
275 |
+
cache_dir="./ckpts/Vevo",
|
276 |
+
allow_patterns=["acoustic_modeling/Vq8192ToMels/*"],
|
277 |
+
)
|
278 |
+
fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json"
|
279 |
+
fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels")
|
280 |
+
downloaded_resources["fmt_Vq8192ToMels"] = True
|
281 |
+
print("Downloaded Flow Matching Transformer (Vq8192ToMels)")
|
282 |
+
else:
|
283 |
+
print("Flow Matching Transformer (Vq8192ToMels) already downloaded, skipping...")
|
284 |
+
fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json"
|
285 |
+
fmt_ckpt_path = os.path.join(
|
286 |
+
"./ckpts/Vevo/snapshots/amphion/Vevo", "acoustic_modeling/Vq8192ToMels"
|
287 |
+
)
|
288 |
|
289 |
# Download Vocoder
|
290 |
+
vocoder_ckpt_path = ""
|
291 |
+
if not downloaded_resources["vocoder"]:
|
292 |
+
local_dir = snapshot_download(
|
293 |
+
repo_id="amphion/Vevo",
|
294 |
+
repo_type="model",
|
295 |
+
cache_dir="./ckpts/Vevo",
|
296 |
+
allow_patterns=["acoustic_modeling/Vocoder/*"],
|
297 |
+
)
|
298 |
+
vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json"
|
299 |
+
vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder")
|
300 |
+
downloaded_resources["vocoder"] = True
|
301 |
+
print("Downloaded Vocoder")
|
302 |
+
else:
|
303 |
+
print("Vocoder already downloaded, skipping...")
|
304 |
+
vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json"
|
305 |
+
vocoder_ckpt_path = os.path.join(
|
306 |
+
"./ckpts/Vevo/snapshots/amphion/Vevo", "acoustic_modeling/Vocoder"
|
307 |
+
)
|
308 |
|
309 |
# Initialize pipeline
|
310 |
inference_pipeline = VevoInferencePipeline(
|
|
|
321 |
|
322 |
elif pipeline_type == "timbre":
|
323 |
# Download Content-Style Tokenizer (only needed for timbre)
|
324 |
+
content_style_tokenizer_ckpt_path = ""
|
325 |
+
if not downloaded_resources["tokenizer_vq8192"]:
|
326 |
+
local_dir = snapshot_download(
|
327 |
+
repo_id="amphion/Vevo",
|
328 |
+
repo_type="model",
|
329 |
+
cache_dir="./ckpts/Vevo",
|
330 |
+
allow_patterns=["tokenizer/vq8192/*"],
|
331 |
+
)
|
332 |
+
content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192")
|
333 |
+
downloaded_resources["tokenizer_vq8192"] = True
|
334 |
+
print("Downloaded Content-Style Tokenizer (vq8192)")
|
335 |
+
else:
|
336 |
+
print("Content-Style Tokenizer (vq8192) already downloaded, skipping...")
|
337 |
+
content_style_tokenizer_ckpt_path = os.path.join(
|
338 |
+
"./ckpts/Vevo/snapshots/amphion/Vevo", "tokenizer/vq8192"
|
339 |
+
)
|
340 |
|
341 |
# Download Flow Matching Transformer
|
342 |
+
fmt_ckpt_path = ""
|
343 |
+
if not downloaded_resources["fmt_Vq8192ToMels"]:
|
344 |
+
local_dir = snapshot_download(
|
345 |
+
repo_id="amphion/Vevo",
|
346 |
+
repo_type="model",
|
347 |
+
cache_dir="./ckpts/Vevo",
|
348 |
+
allow_patterns=["acoustic_modeling/Vq8192ToMels/*"],
|
349 |
+
)
|
350 |
+
fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json"
|
351 |
+
fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels")
|
352 |
+
downloaded_resources["fmt_Vq8192ToMels"] = True
|
353 |
+
print("Downloaded Flow Matching Transformer (Vq8192ToMels)")
|
354 |
+
else:
|
355 |
+
print("Flow Matching Transformer (Vq8192ToMels) already downloaded, skipping...")
|
356 |
+
fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json"
|
357 |
+
fmt_ckpt_path = os.path.join(
|
358 |
+
"./ckpts/Vevo/snapshots/amphion/Vevo", "acoustic_modeling/Vq8192ToMels"
|
359 |
+
)
|
360 |
|
361 |
# Download Vocoder
|
362 |
+
vocoder_ckpt_path = ""
|
363 |
+
if not downloaded_resources["vocoder"]:
|
364 |
+
local_dir = snapshot_download(
|
365 |
+
repo_id="amphion/Vevo",
|
366 |
+
repo_type="model",
|
367 |
+
cache_dir="./ckpts/Vevo",
|
368 |
+
allow_patterns=["acoustic_modeling/Vocoder/*"],
|
369 |
+
)
|
370 |
+
vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json"
|
371 |
+
vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder")
|
372 |
+
downloaded_resources["vocoder"] = True
|
373 |
+
print("Downloaded Vocoder")
|
374 |
+
else:
|
375 |
+
print("Vocoder already downloaded, skipping...")
|
376 |
+
vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json"
|
377 |
+
vocoder_ckpt_path = os.path.join(
|
378 |
+
"./ckpts/Vevo/snapshots/amphion/Vevo", "acoustic_modeling/Vocoder"
|
379 |
+
)
|
380 |
|
381 |
# Initialize pipeline
|
382 |
inference_pipeline = VevoInferencePipeline(
|
|
|
390 |
|
391 |
elif pipeline_type == "tts":
|
392 |
# Download Content-Style Tokenizer
|
393 |
+
content_style_tokenizer_ckpt_path = ""
|
394 |
+
if not downloaded_resources["tokenizer_vq8192"]:
|
395 |
+
local_dir = snapshot_download(
|
396 |
+
repo_id="amphion/Vevo",
|
397 |
+
repo_type="model",
|
398 |
+
cache_dir="./ckpts/Vevo",
|
399 |
+
allow_patterns=["tokenizer/vq8192/*"],
|
400 |
+
)
|
401 |
+
content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192")
|
402 |
+
downloaded_resources["tokenizer_vq8192"] = True
|
403 |
+
print("Downloaded Content-Style Tokenizer (vq8192)")
|
404 |
+
else:
|
405 |
+
print("Content-Style Tokenizer (vq8192) already downloaded, skipping...")
|
406 |
+
content_style_tokenizer_ckpt_path = os.path.join(
|
407 |
+
"./ckpts/Vevo/snapshots/amphion/Vevo", "tokenizer/vq8192"
|
408 |
+
)
|
409 |
|
410 |
# Download Autoregressive Transformer (TTS specific)
|
411 |
+
ar_ckpt_path = ""
|
412 |
+
if not downloaded_resources["ar_PhoneToVq8192"]:
|
413 |
+
local_dir = snapshot_download(
|
414 |
+
repo_id="amphion/Vevo",
|
415 |
+
repo_type="model",
|
416 |
+
cache_dir="./ckpts/Vevo",
|
417 |
+
allow_patterns=["contentstyle_modeling/PhoneToVq8192/*"],
|
418 |
+
)
|
419 |
+
ar_cfg_path = "./models/vc/vevo/config/PhoneToVq8192.json"
|
420 |
+
ar_ckpt_path = os.path.join(local_dir, "contentstyle_modeling/PhoneToVq8192")
|
421 |
+
downloaded_resources["ar_PhoneToVq8192"] = True
|
422 |
+
print("Downloaded Autoregressive Transformer (PhoneToVq8192)")
|
423 |
+
else:
|
424 |
+
print("Autoregressive Transformer (PhoneToVq8192) already downloaded, skipping...")
|
425 |
+
ar_cfg_path = "./models/vc/vevo/config/PhoneToVq8192.json"
|
426 |
+
ar_ckpt_path = os.path.join(
|
427 |
+
"./ckpts/Vevo/snapshots/amphion/Vevo", "contentstyle_modeling/PhoneToVq8192"
|
428 |
+
)
|
429 |
|
430 |
# Download Flow Matching Transformer
|
431 |
+
fmt_ckpt_path = ""
|
432 |
+
if not downloaded_resources["fmt_Vq8192ToMels"]:
|
433 |
+
local_dir = snapshot_download(
|
434 |
+
repo_id="amphion/Vevo",
|
435 |
+
repo_type="model",
|
436 |
+
cache_dir="./ckpts/Vevo",
|
437 |
+
allow_patterns=["acoustic_modeling/Vq8192ToMels/*"],
|
438 |
+
)
|
439 |
+
fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json"
|
440 |
+
fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels")
|
441 |
+
downloaded_resources["fmt_Vq8192ToMels"] = True
|
442 |
+
print("Downloaded Flow Matching Transformer (Vq8192ToMels)")
|
443 |
+
else:
|
444 |
+
print("Flow Matching Transformer (Vq8192ToMels) already downloaded, skipping...")
|
445 |
+
fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json"
|
446 |
+
fmt_ckpt_path = os.path.join(
|
447 |
+
"./ckpts/Vevo/snapshots/amphion/Vevo", "acoustic_modeling/Vq8192ToMels"
|
448 |
+
)
|
449 |
|
450 |
# Download Vocoder
|
451 |
+
vocoder_ckpt_path = ""
|
452 |
+
if not downloaded_resources["vocoder"]:
|
453 |
+
local_dir = snapshot_download(
|
454 |
+
repo_id="amphion/Vevo",
|
455 |
+
repo_type="model",
|
456 |
+
cache_dir="./ckpts/Vevo",
|
457 |
+
allow_patterns=["acoustic_modeling/Vocoder/*"],
|
458 |
+
)
|
459 |
+
vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json"
|
460 |
+
vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder")
|
461 |
+
downloaded_resources["vocoder"] = True
|
462 |
+
print("Downloaded Vocoder")
|
463 |
+
else:
|
464 |
+
print("Vocoder already downloaded, skipping...")
|
465 |
+
vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json"
|
466 |
+
vocoder_ckpt_path = os.path.join(
|
467 |
+
"./ckpts/Vevo/snapshots/amphion/Vevo", "acoustic_modeling/Vocoder"
|
468 |
+
)
|
469 |
|
470 |
# Initialize pipeline
|
471 |
inference_pipeline = VevoInferencePipeline(
|
|
|
894 |
traceback.print_exc()
|
895 |
raise e
|
896 |
|
897 |
+
# 在程序启动时下载所有需要的模型资源
|
898 |
+
def preload_all_resources():
|
899 |
+
print("预加载所有模型资源...")
|
900 |
+
# 下载配置文件
|
901 |
+
setup_configs()
|
902 |
+
|
903 |
+
# 下载Content Tokenizer (vq32)
|
904 |
+
if not downloaded_resources["tokenizer_vq32"]:
|
905 |
+
print("预下载 Content Tokenizer (vq32)...")
|
906 |
+
local_dir = snapshot_download(
|
907 |
+
repo_id="amphion/Vevo",
|
908 |
+
repo_type="model",
|
909 |
+
cache_dir="./ckpts/Vevo",
|
910 |
+
allow_patterns=["tokenizer/vq32/*"],
|
911 |
+
)
|
912 |
+
downloaded_resources["tokenizer_vq32"] = True
|
913 |
+
print("Content Tokenizer (vq32) 下载完成")
|
914 |
+
|
915 |
+
# 下载Content-Style Tokenizer (vq8192)
|
916 |
+
if not downloaded_resources["tokenizer_vq8192"]:
|
917 |
+
print("预下载 Content-Style Tokenizer (vq8192)...")
|
918 |
+
local_dir = snapshot_download(
|
919 |
+
repo_id="amphion/Vevo",
|
920 |
+
repo_type="model",
|
921 |
+
cache_dir="./ckpts/Vevo",
|
922 |
+
allow_patterns=["tokenizer/vq8192/*"],
|
923 |
+
)
|
924 |
+
downloaded_resources["tokenizer_vq8192"] = True
|
925 |
+
print("Content-Style Tokenizer (vq8192) 下载完成")
|
926 |
+
|
927 |
+
# 下载Autoregressive Transformer (Vq32ToVq8192)
|
928 |
+
if not downloaded_resources["ar_Vq32ToVq8192"]:
|
929 |
+
print("预下载 Autoregressive Transformer (Vq32ToVq8192)...")
|
930 |
+
local_dir = snapshot_download(
|
931 |
+
repo_id="amphion/Vevo",
|
932 |
+
repo_type="model",
|
933 |
+
cache_dir="./ckpts/Vevo",
|
934 |
+
allow_patterns=["contentstyle_modeling/Vq32ToVq8192/*"],
|
935 |
+
)
|
936 |
+
downloaded_resources["ar_Vq32ToVq8192"] = True
|
937 |
+
print("Autoregressive Transformer (Vq32ToVq8192) 下载完成")
|
938 |
+
|
939 |
+
# 下载Autoregressive Transformer (PhoneToVq8192)
|
940 |
+
if not downloaded_resources["ar_PhoneToVq8192"]:
|
941 |
+
print("预下载 Autoregressive Transformer (PhoneToVq8192)...")
|
942 |
+
local_dir = snapshot_download(
|
943 |
+
repo_id="amphion/Vevo",
|
944 |
+
repo_type="model",
|
945 |
+
cache_dir="./ckpts/Vevo",
|
946 |
+
allow_patterns=["contentstyle_modeling/PhoneToVq8192/*"],
|
947 |
+
)
|
948 |
+
downloaded_resources["ar_PhoneToVq8192"] = True
|
949 |
+
print("Autoregressive Transformer (PhoneToVq8192) 下载完成")
|
950 |
+
|
951 |
+
# 下载Flow Matching Transformer
|
952 |
+
if not downloaded_resources["fmt_Vq8192ToMels"]:
|
953 |
+
print("预下载 Flow Matching Transformer (Vq8192ToMels)...")
|
954 |
+
local_dir = snapshot_download(
|
955 |
+
repo_id="amphion/Vevo",
|
956 |
+
repo_type="model",
|
957 |
+
cache_dir="./ckpts/Vevo",
|
958 |
+
allow_patterns=["acoustic_modeling/Vq8192ToMels/*"],
|
959 |
+
)
|
960 |
+
downloaded_resources["fmt_Vq8192ToMels"] = True
|
961 |
+
print("Flow Matching Transformer (Vq8192ToMels) 下载完成")
|
962 |
+
|
963 |
+
# 下载Vocoder
|
964 |
+
if not downloaded_resources["vocoder"]:
|
965 |
+
print("预下载 Vocoder...")
|
966 |
+
local_dir = snapshot_download(
|
967 |
+
repo_id="amphion/Vevo",
|
968 |
+
repo_type="model",
|
969 |
+
cache_dir="./ckpts/Vevo",
|
970 |
+
allow_patterns=["acoustic_modeling/Vocoder/*"],
|
971 |
+
)
|
972 |
+
downloaded_resources["vocoder"] = True
|
973 |
+
print("Vocoder 下载完成")
|
974 |
+
|
975 |
+
print("所有模型资源预加载完成!")
|
976 |
+
|
977 |
+
# 在创建Gradio界面之前预加载所有资源
|
978 |
+
preload_all_resources()
|
979 |
+
|
980 |
# Create Gradio interface
|
981 |
with gr.Blocks(title="Vevo: Controllable Zero-Shot Voice Imitation with Self-Supervised Disentanglement") as demo:
|
982 |
gr.Markdown("# Vevo: Controllable Zero-Shot Voice Imitation with Self-Supervised Disentanglement")
|