Spaces:
Running
on
Zero
Running
on
Zero
积极的屁孩
commited on
Commit
·
2b30c39
1
Parent(s):
70645fe
first commit
Browse files- app.py +841 -0
- requirements.txt +30 -0
app.py
ADDED
@@ -0,0 +1,841 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import importlib.util
|
4 |
+
import site
|
5 |
+
import json
|
6 |
+
import torch
|
7 |
+
import gradio as gr
|
8 |
+
import torchaudio
|
9 |
+
import numpy as np
|
10 |
+
from huggingface_hub import snapshot_download, hf_hub_download
|
11 |
+
import subprocess
|
12 |
+
import re
|
13 |
+
|
14 |
+
def install_espeak():
|
15 |
+
"""检测并安装espeak-ng依赖"""
|
16 |
+
try:
|
17 |
+
# 检查espeak-ng是否已安装
|
18 |
+
result = subprocess.run(["which", "espeak-ng"], capture_output=True, text=True)
|
19 |
+
if result.returncode != 0:
|
20 |
+
print("检测到系统中未安装espeak-ng,正在尝试安装...")
|
21 |
+
# 尝试使用apt-get安装espeak-ng及其数据
|
22 |
+
subprocess.run(["apt-get", "update"], check=True)
|
23 |
+
# 安装 espeak-ng 和对应的语言数据包
|
24 |
+
subprocess.run(["apt-get", "install", "-y", "espeak-ng", "espeak-ng-data"], check=True)
|
25 |
+
print("espeak-ng及其数据包安装成功!")
|
26 |
+
else:
|
27 |
+
print("espeak-ng已安装在系统中。")
|
28 |
+
# 即使已安装,也尝试更新数据确保完整性 (可选,但有时有帮助)
|
29 |
+
# print("尝试更新 espeak-ng 数据...")
|
30 |
+
# subprocess.run(["apt-get", "update"], check=True)
|
31 |
+
# subprocess.run(["apt-get", "install", "--only-upgrade", "-y", "espeak-ng-data"], check=True)
|
32 |
+
|
33 |
+
# 验证中文支持 (可选)
|
34 |
+
try:
|
35 |
+
voices_result = subprocess.run(["espeak-ng", "--voices=cmn"], capture_output=True, text=True, check=True)
|
36 |
+
if "cmn" in voices_result.stdout:
|
37 |
+
print("espeak-ng 支持 'cmn' 语言。")
|
38 |
+
else:
|
39 |
+
print("警告:espeak-ng 安装了,但 'cmn' 语言似乎仍不可用。")
|
40 |
+
except Exception as e:
|
41 |
+
print(f"验证 espeak-ng 中文支持时出错(可能不影响功能): {e}")
|
42 |
+
|
43 |
+
except Exception as e:
|
44 |
+
print(f"安装espeak-ng时出错: {e}")
|
45 |
+
print("请尝试手动运行: apt-get update && apt-get install -y espeak-ng espeak-ng-data")
|
46 |
+
|
47 |
+
# 在所有其他操作之前安装espeak
|
48 |
+
install_espeak()
|
49 |
+
|
50 |
+
def patch_langsegment_init():
|
51 |
+
try:
|
52 |
+
# 尝试找到 LangSegment 包的位置
|
53 |
+
spec = importlib.util.find_spec("LangSegment")
|
54 |
+
if spec is None or spec.origin is None:
|
55 |
+
print("无法定位 LangSegment 包。")
|
56 |
+
return
|
57 |
+
|
58 |
+
# 构建 __init__.py 的路径
|
59 |
+
init_path = os.path.join(os.path.dirname(spec.origin), '__init__.py')
|
60 |
+
|
61 |
+
if not os.path.exists(init_path):
|
62 |
+
print(f"未找到 LangSegment 的 __init__.py 文件于: {init_path}")
|
63 |
+
# 尝试在 site-packages 中查找,适用于某些环境
|
64 |
+
for site_pkg_path in site.getsitepackages():
|
65 |
+
potential_path = os.path.join(site_pkg_path, 'LangSegment', '__init__.py')
|
66 |
+
if os.path.exists(potential_path):
|
67 |
+
init_path = potential_path
|
68 |
+
print(f"在 site-packages 中找到 __init__.py: {init_path}")
|
69 |
+
break
|
70 |
+
else: # 如果循环正常结束(没有 break)
|
71 |
+
print(f"在 site-packages 中也未找到 __init__.py")
|
72 |
+
return
|
73 |
+
|
74 |
+
|
75 |
+
print(f"尝试读取 LangSegment __init__.py: {init_path}")
|
76 |
+
with open(init_path, 'r') as f:
|
77 |
+
lines = f.readlines()
|
78 |
+
|
79 |
+
modified = False
|
80 |
+
new_lines = []
|
81 |
+
target_line_prefix = "from .LangSegment import"
|
82 |
+
|
83 |
+
for line in lines:
|
84 |
+
stripped_line = line.strip()
|
85 |
+
if stripped_line.startswith(target_line_prefix):
|
86 |
+
if 'setLangfilters' in stripped_line or 'getLangfilters' in stripped_line:
|
87 |
+
print(f"发现需要修改的行: {stripped_line}")
|
88 |
+
# 移除 setLangfilters 和 getLangfilters
|
89 |
+
modified_line = stripped_line.replace(',setLangfilters', '')
|
90 |
+
modified_line = modified_line.replace(',getLangfilters', '')
|
91 |
+
# 确保逗号处理正确 (例如,如果它们是末尾的项)
|
92 |
+
modified_line = modified_line.replace('setLangfilters,', '')
|
93 |
+
modified_line = modified_line.replace('getLangfilters,', '')
|
94 |
+
# 如果它们是唯一的额外导入,移除可能多余的逗号
|
95 |
+
modified_line = modified_line.rstrip(',')
|
96 |
+
new_lines.append(modified_line + '\n')
|
97 |
+
modified = True
|
98 |
+
print(f"修改后的行: {modified_line.strip()}")
|
99 |
+
else:
|
100 |
+
new_lines.append(line) # 行没问题,保留原样
|
101 |
+
else:
|
102 |
+
new_lines.append(line) # 非目标行,保留原样
|
103 |
+
|
104 |
+
if modified:
|
105 |
+
print(f"尝试写回已修改的 LangSegment __init__.py 到: {init_path}")
|
106 |
+
try:
|
107 |
+
with open(init_path, 'w') as f:
|
108 |
+
f.writelines(new_lines)
|
109 |
+
print("LangSegment __init__.py 修改成功。")
|
110 |
+
# 尝试重新加载模块以使更改生效(可能无效,取决于导入链)
|
111 |
+
try:
|
112 |
+
import LangSegment
|
113 |
+
importlib.reload(LangSegment)
|
114 |
+
print("LangSegment 模块已尝试重新加载。")
|
115 |
+
except Exception as reload_e:
|
116 |
+
print(f"重新加载 LangSegment 时出错(可能无影响): {reload_e}")
|
117 |
+
except PermissionError:
|
118 |
+
print(f"错误:权限不足,无法修改 {init_path}。请考虑修改 requirements.txt。")
|
119 |
+
except Exception as write_e:
|
120 |
+
print(f"写入 LangSegment __init__.py 时发生其他错误: {write_e}")
|
121 |
+
else:
|
122 |
+
print("LangSegment __init__.py 无需修改。")
|
123 |
+
|
124 |
+
except ImportError:
|
125 |
+
print("未找到 LangSegment 包,无法进行修复。")
|
126 |
+
except Exception as e:
|
127 |
+
print(f"修复 LangSegment 包时发生意外错误: {e}")
|
128 |
+
|
129 |
+
# 在所有其他导入(尤其是可能触发 LangSegment 导入的 Amphion)之前执行修复
|
130 |
+
patch_langsegment_init()
|
131 |
+
|
132 |
+
# 克隆Amphion仓库
|
133 |
+
if not os.path.exists("Amphion"):
|
134 |
+
subprocess.run(["git", "clone", "https://github.com/open-mmlab/Amphion.git"])
|
135 |
+
os.chdir("Amphion")
|
136 |
+
else:
|
137 |
+
if not os.getcwd().endswith("Amphion"):
|
138 |
+
os.chdir("Amphion")
|
139 |
+
|
140 |
+
# 将Amphion加入到路径中
|
141 |
+
if os.path.dirname(os.path.abspath("Amphion")) not in sys.path:
|
142 |
+
sys.path.append(os.path.dirname(os.path.abspath("Amphion")))
|
143 |
+
|
144 |
+
# 确保需要的目录存在
|
145 |
+
os.makedirs("wav", exist_ok=True)
|
146 |
+
os.makedirs("ckpts/Vevo", exist_ok=True)
|
147 |
+
|
148 |
+
from models.vc.vevo.vevo_utils import VevoInferencePipeline, save_audio, load_wav
|
149 |
+
|
150 |
+
# 下载和设置配置文件
|
151 |
+
def setup_configs():
|
152 |
+
config_path = "models/vc/vevo/config"
|
153 |
+
os.makedirs(config_path, exist_ok=True)
|
154 |
+
|
155 |
+
config_files = [
|
156 |
+
"PhoneToVq8192.json",
|
157 |
+
"Vocoder.json",
|
158 |
+
"Vq32ToVq8192.json",
|
159 |
+
"Vq8192ToMels.json",
|
160 |
+
"hubert_large_l18_c32.yaml",
|
161 |
+
]
|
162 |
+
|
163 |
+
for file in config_files:
|
164 |
+
file_path = f"{config_path}/{file}"
|
165 |
+
if not os.path.exists(file_path):
|
166 |
+
try:
|
167 |
+
file_data = hf_hub_download(
|
168 |
+
repo_id="amphion/Vevo",
|
169 |
+
filename=f"config/{file}",
|
170 |
+
repo_type="model",
|
171 |
+
)
|
172 |
+
os.makedirs(os.path.dirname(file_path), exist_ok=True)
|
173 |
+
# 拷贝文件到目标位置
|
174 |
+
subprocess.run(["cp", file_data, file_path])
|
175 |
+
except Exception as e:
|
176 |
+
print(f"下载配置文件 {file} 时出错: {e}")
|
177 |
+
|
178 |
+
setup_configs()
|
179 |
+
|
180 |
+
# 设备配置
|
181 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
182 |
+
print(f"使用设备: {device}")
|
183 |
+
|
184 |
+
# 初始化管道字典
|
185 |
+
inference_pipelines = {}
|
186 |
+
|
187 |
+
def get_pipeline(pipeline_type):
|
188 |
+
if pipeline_type in inference_pipelines:
|
189 |
+
return inference_pipelines[pipeline_type]
|
190 |
+
|
191 |
+
# 根据需要的管道类型初始化
|
192 |
+
if pipeline_type == "style" or pipeline_type == "voice":
|
193 |
+
# 下载Content Tokenizer
|
194 |
+
local_dir = snapshot_download(
|
195 |
+
repo_id="amphion/Vevo",
|
196 |
+
repo_type="model",
|
197 |
+
cache_dir="./ckpts/Vevo",
|
198 |
+
allow_patterns=["tokenizer/vq32/*"],
|
199 |
+
)
|
200 |
+
content_tokenizer_ckpt_path = os.path.join(
|
201 |
+
local_dir, "tokenizer/vq32/hubert_large_l18_c32.pkl"
|
202 |
+
)
|
203 |
+
|
204 |
+
# 下载Content-Style Tokenizer
|
205 |
+
local_dir = snapshot_download(
|
206 |
+
repo_id="amphion/Vevo",
|
207 |
+
repo_type="model",
|
208 |
+
cache_dir="./ckpts/Vevo",
|
209 |
+
allow_patterns=["tokenizer/vq8192/*"],
|
210 |
+
)
|
211 |
+
content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192")
|
212 |
+
|
213 |
+
# 下载Autoregressive Transformer
|
214 |
+
local_dir = snapshot_download(
|
215 |
+
repo_id="amphion/Vevo",
|
216 |
+
repo_type="model",
|
217 |
+
cache_dir="./ckpts/Vevo",
|
218 |
+
allow_patterns=["contentstyle_modeling/Vq32ToVq8192/*"],
|
219 |
+
)
|
220 |
+
ar_cfg_path = "./models/vc/vevo/config/Vq32ToVq8192.json"
|
221 |
+
ar_ckpt_path = os.path.join(local_dir, "contentstyle_modeling/Vq32ToVq8192")
|
222 |
+
|
223 |
+
# 下载Flow Matching Transformer
|
224 |
+
local_dir = snapshot_download(
|
225 |
+
repo_id="amphion/Vevo",
|
226 |
+
repo_type="model",
|
227 |
+
cache_dir="./ckpts/Vevo",
|
228 |
+
allow_patterns=["acoustic_modeling/Vq8192ToMels/*"],
|
229 |
+
)
|
230 |
+
fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json"
|
231 |
+
fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels")
|
232 |
+
|
233 |
+
# 下载Vocoder
|
234 |
+
local_dir = snapshot_download(
|
235 |
+
repo_id="amphion/Vevo",
|
236 |
+
repo_type="model",
|
237 |
+
cache_dir="./ckpts/Vevo",
|
238 |
+
allow_patterns=["acoustic_modeling/Vocoder/*"],
|
239 |
+
)
|
240 |
+
vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json"
|
241 |
+
vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder")
|
242 |
+
|
243 |
+
# 初始化管道
|
244 |
+
inference_pipeline = VevoInferencePipeline(
|
245 |
+
content_tokenizer_ckpt_path=content_tokenizer_ckpt_path,
|
246 |
+
content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path,
|
247 |
+
ar_cfg_path=ar_cfg_path,
|
248 |
+
ar_ckpt_path=ar_ckpt_path,
|
249 |
+
fmt_cfg_path=fmt_cfg_path,
|
250 |
+
fmt_ckpt_path=fmt_ckpt_path,
|
251 |
+
vocoder_cfg_path=vocoder_cfg_path,
|
252 |
+
vocoder_ckpt_path=vocoder_ckpt_path,
|
253 |
+
device=device,
|
254 |
+
)
|
255 |
+
|
256 |
+
elif pipeline_type == "timbre":
|
257 |
+
# 下载Content-Style Tokenizer (仅timbre需要)
|
258 |
+
local_dir = snapshot_download(
|
259 |
+
repo_id="amphion/Vevo",
|
260 |
+
repo_type="model",
|
261 |
+
cache_dir="./ckpts/Vevo",
|
262 |
+
allow_patterns=["tokenizer/vq8192/*"],
|
263 |
+
)
|
264 |
+
content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192")
|
265 |
+
|
266 |
+
# 下载Flow Matching Transformer
|
267 |
+
local_dir = snapshot_download(
|
268 |
+
repo_id="amphion/Vevo",
|
269 |
+
repo_type="model",
|
270 |
+
cache_dir="./ckpts/Vevo",
|
271 |
+
allow_patterns=["acoustic_modeling/Vq8192ToMels/*"],
|
272 |
+
)
|
273 |
+
fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json"
|
274 |
+
fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels")
|
275 |
+
|
276 |
+
# 下载Vocoder
|
277 |
+
local_dir = snapshot_download(
|
278 |
+
repo_id="amphion/Vevo",
|
279 |
+
repo_type="model",
|
280 |
+
cache_dir="./ckpts/Vevo",
|
281 |
+
allow_patterns=["acoustic_modeling/Vocoder/*"],
|
282 |
+
)
|
283 |
+
vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json"
|
284 |
+
vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder")
|
285 |
+
|
286 |
+
# 初始化管道
|
287 |
+
inference_pipeline = VevoInferencePipeline(
|
288 |
+
content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path,
|
289 |
+
fmt_cfg_path=fmt_cfg_path,
|
290 |
+
fmt_ckpt_path=fmt_ckpt_path,
|
291 |
+
vocoder_cfg_path=vocoder_cfg_path,
|
292 |
+
vocoder_ckpt_path=vocoder_ckpt_path,
|
293 |
+
device=device,
|
294 |
+
)
|
295 |
+
|
296 |
+
elif pipeline_type == "tts":
|
297 |
+
# 下载Content-Style Tokenizer
|
298 |
+
local_dir = snapshot_download(
|
299 |
+
repo_id="amphion/Vevo",
|
300 |
+
repo_type="model",
|
301 |
+
cache_dir="./ckpts/Vevo",
|
302 |
+
allow_patterns=["tokenizer/vq8192/*"],
|
303 |
+
)
|
304 |
+
content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192")
|
305 |
+
|
306 |
+
# 下载Autoregressive Transformer (TTS特有)
|
307 |
+
local_dir = snapshot_download(
|
308 |
+
repo_id="amphion/Vevo",
|
309 |
+
repo_type="model",
|
310 |
+
cache_dir="./ckpts/Vevo",
|
311 |
+
allow_patterns=["contentstyle_modeling/PhoneToVq8192/*"],
|
312 |
+
)
|
313 |
+
ar_cfg_path = "./models/vc/vevo/config/PhoneToVq8192.json"
|
314 |
+
ar_ckpt_path = os.path.join(local_dir, "contentstyle_modeling/PhoneToVq8192")
|
315 |
+
|
316 |
+
# 下载Flow Matching Transformer
|
317 |
+
local_dir = snapshot_download(
|
318 |
+
repo_id="amphion/Vevo",
|
319 |
+
repo_type="model",
|
320 |
+
cache_dir="./ckpts/Vevo",
|
321 |
+
allow_patterns=["acoustic_modeling/Vq8192ToMels/*"],
|
322 |
+
)
|
323 |
+
fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json"
|
324 |
+
fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels")
|
325 |
+
|
326 |
+
# 下载Vocoder
|
327 |
+
local_dir = snapshot_download(
|
328 |
+
repo_id="amphion/Vevo",
|
329 |
+
repo_type="model",
|
330 |
+
cache_dir="./ckpts/Vevo",
|
331 |
+
allow_patterns=["acoustic_modeling/Vocoder/*"],
|
332 |
+
)
|
333 |
+
vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json"
|
334 |
+
vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder")
|
335 |
+
|
336 |
+
# 初始化管道
|
337 |
+
inference_pipeline = VevoInferencePipeline(
|
338 |
+
content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path,
|
339 |
+
ar_cfg_path=ar_cfg_path,
|
340 |
+
ar_ckpt_path=ar_ckpt_path,
|
341 |
+
fmt_cfg_path=fmt_cfg_path,
|
342 |
+
fmt_ckpt_path=fmt_ckpt_path,
|
343 |
+
vocoder_cfg_path=vocoder_cfg_path,
|
344 |
+
vocoder_ckpt_path=vocoder_ckpt_path,
|
345 |
+
device=device,
|
346 |
+
)
|
347 |
+
|
348 |
+
# 缓存管道实例
|
349 |
+
inference_pipelines[pipeline_type] = inference_pipeline
|
350 |
+
return inference_pipeline
|
351 |
+
|
352 |
+
# 实现VEVO功能函数
|
353 |
+
def vevo_style(content_wav, style_wav):
|
354 |
+
temp_content_path = "wav/temp_content.wav"
|
355 |
+
temp_style_path = "wav/temp_style.wav"
|
356 |
+
output_path = "wav/output_vevostyle.wav"
|
357 |
+
|
358 |
+
# 检查并处理音频数据
|
359 |
+
if content_wav is None or style_wav is None:
|
360 |
+
raise ValueError("Please upload audio files")
|
361 |
+
|
362 |
+
# 处理音频格式
|
363 |
+
if isinstance(content_wav, tuple) and len(content_wav) == 2:
|
364 |
+
if isinstance(content_wav[0], np.ndarray):
|
365 |
+
content_data, content_sr = content_wav
|
366 |
+
else:
|
367 |
+
content_sr, content_data = content_wav
|
368 |
+
|
369 |
+
# 确保是单声道
|
370 |
+
if len(content_data.shape) > 1 and content_data.shape[1] > 1:
|
371 |
+
content_data = np.mean(content_data, axis=1)
|
372 |
+
|
373 |
+
# 重采样到24kHz
|
374 |
+
if content_sr != 24000:
|
375 |
+
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
|
376 |
+
content_tensor = torchaudio.functional.resample(content_tensor, content_sr, 24000)
|
377 |
+
content_sr = 24000
|
378 |
+
else:
|
379 |
+
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
|
380 |
+
|
381 |
+
# 归一化音量
|
382 |
+
content_tensor = content_tensor / (torch.max(torch.abs(content_tensor)) + 1e-6) * 0.95
|
383 |
+
else:
|
384 |
+
raise ValueError("Invalid content audio format")
|
385 |
+
|
386 |
+
if isinstance(style_wav, tuple) and len(style_wav) == 2:
|
387 |
+
# 确保正确的顺序 (data, sample_rate)
|
388 |
+
if isinstance(style_wav[0], np.ndarray):
|
389 |
+
style_data, style_sr = style_wav
|
390 |
+
else:
|
391 |
+
style_sr, style_data = style_wav
|
392 |
+
style_tensor = torch.FloatTensor(style_data)
|
393 |
+
if style_tensor.ndim == 1:
|
394 |
+
style_tensor = style_tensor.unsqueeze(0) # 添加通道维度
|
395 |
+
else:
|
396 |
+
raise ValueError("Invalid style audio format")
|
397 |
+
|
398 |
+
# 打印debug信息
|
399 |
+
print(f"Content audio shape: {content_tensor.shape}, sample rate: {content_sr}")
|
400 |
+
print(f"Style audio shape: {style_tensor.shape}, sample rate: {style_sr}")
|
401 |
+
|
402 |
+
# 保存音频
|
403 |
+
torchaudio.save(temp_content_path, content_tensor, content_sr)
|
404 |
+
torchaudio.save(temp_style_path, style_tensor, style_sr)
|
405 |
+
|
406 |
+
try:
|
407 |
+
# 获取管道
|
408 |
+
pipeline = get_pipeline("style")
|
409 |
+
|
410 |
+
# 推理
|
411 |
+
gen_audio = pipeline.inference_ar_and_fm(
|
412 |
+
src_wav_path=temp_content_path,
|
413 |
+
src_text=None,
|
414 |
+
style_ref_wav_path=temp_style_path,
|
415 |
+
timbre_ref_wav_path=temp_content_path,
|
416 |
+
)
|
417 |
+
|
418 |
+
# 检查生成音频是否为数值异常
|
419 |
+
if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any():
|
420 |
+
print("Warning: Generated audio contains NaN or Inf values")
|
421 |
+
gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95)
|
422 |
+
|
423 |
+
print(f"Generated audio shape: {gen_audio.shape}, max: {torch.max(gen_audio)}, min: {torch.min(gen_audio)}")
|
424 |
+
|
425 |
+
# 保存生成的音频
|
426 |
+
save_audio(gen_audio, output_path=output_path)
|
427 |
+
|
428 |
+
return output_path
|
429 |
+
except Exception as e:
|
430 |
+
print(f"Error during processing: {e}")
|
431 |
+
import traceback
|
432 |
+
traceback.print_exc()
|
433 |
+
raise e
|
434 |
+
|
435 |
+
def vevo_timbre(content_wav, reference_wav):
|
436 |
+
temp_content_path = "wav/temp_content.wav"
|
437 |
+
temp_reference_path = "wav/temp_reference.wav"
|
438 |
+
output_path = "wav/output_vevotimbre.wav"
|
439 |
+
|
440 |
+
# 检查并处理音频数据
|
441 |
+
if content_wav is None or reference_wav is None:
|
442 |
+
raise ValueError("Please upload audio files")
|
443 |
+
|
444 |
+
# 处理内容音频格式
|
445 |
+
if isinstance(content_wav, tuple) and len(content_wav) == 2:
|
446 |
+
if isinstance(content_wav[0], np.ndarray):
|
447 |
+
content_data, content_sr = content_wav
|
448 |
+
else:
|
449 |
+
content_sr, content_data = content_wav
|
450 |
+
|
451 |
+
# 确保是单声道
|
452 |
+
if len(content_data.shape) > 1 and content_data.shape[1] > 1:
|
453 |
+
content_data = np.mean(content_data, axis=1)
|
454 |
+
|
455 |
+
# 重采样到24kHz
|
456 |
+
if content_sr != 24000:
|
457 |
+
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
|
458 |
+
content_tensor = torchaudio.functional.resample(content_tensor, content_sr, 24000)
|
459 |
+
content_sr = 24000
|
460 |
+
else:
|
461 |
+
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
|
462 |
+
|
463 |
+
# 归一化音量
|
464 |
+
content_tensor = content_tensor / (torch.max(torch.abs(content_tensor)) + 1e-6) * 0.95
|
465 |
+
else:
|
466 |
+
raise ValueError("Invalid content audio format")
|
467 |
+
|
468 |
+
# 处理参考音频格式
|
469 |
+
if isinstance(reference_wav, tuple) and len(reference_wav) == 2:
|
470 |
+
if isinstance(reference_wav[0], np.ndarray):
|
471 |
+
reference_data, reference_sr = reference_wav
|
472 |
+
else:
|
473 |
+
reference_sr, reference_data = reference_wav
|
474 |
+
|
475 |
+
# 确保是单声道
|
476 |
+
if len(reference_data.shape) > 1 and reference_data.shape[1] > 1:
|
477 |
+
reference_data = np.mean(reference_data, axis=1)
|
478 |
+
|
479 |
+
# 重采样到24kHz
|
480 |
+
if reference_sr != 24000:
|
481 |
+
reference_tensor = torch.FloatTensor(reference_data).unsqueeze(0)
|
482 |
+
reference_tensor = torchaudio.functional.resample(reference_tensor, reference_sr, 24000)
|
483 |
+
reference_sr = 24000
|
484 |
+
else:
|
485 |
+
reference_tensor = torch.FloatTensor(reference_data).unsqueeze(0)
|
486 |
+
|
487 |
+
# 归一化音量
|
488 |
+
reference_tensor = reference_tensor / (torch.max(torch.abs(reference_tensor)) + 1e-6) * 0.95
|
489 |
+
else:
|
490 |
+
raise ValueError("Invalid reference audio format")
|
491 |
+
|
492 |
+
# 打印debug信息
|
493 |
+
print(f"Content audio shape: {content_tensor.shape}, sample rate: {content_sr}")
|
494 |
+
print(f"Reference audio shape: {reference_tensor.shape}, sample rate: {reference_sr}")
|
495 |
+
|
496 |
+
# 保存上传的音频
|
497 |
+
torchaudio.save(temp_content_path, content_tensor, content_sr)
|
498 |
+
torchaudio.save(temp_reference_path, reference_tensor, reference_sr)
|
499 |
+
|
500 |
+
try:
|
501 |
+
# 获取管道
|
502 |
+
pipeline = get_pipeline("timbre")
|
503 |
+
|
504 |
+
# 推理
|
505 |
+
gen_audio = pipeline.inference_fm(
|
506 |
+
src_wav_path=temp_content_path,
|
507 |
+
timbre_ref_wav_path=temp_reference_path,
|
508 |
+
flow_matching_steps=32,
|
509 |
+
)
|
510 |
+
|
511 |
+
# 检查生成音频是否为数值异常
|
512 |
+
if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any():
|
513 |
+
print("Warning: Generated audio contains NaN or Inf values")
|
514 |
+
gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95)
|
515 |
+
|
516 |
+
print(f"Generated audio shape: {gen_audio.shape}, max: {torch.max(gen_audio)}, min: {torch.min(gen_audio)}")
|
517 |
+
|
518 |
+
# 保存生成的音频
|
519 |
+
save_audio(gen_audio, output_path=output_path)
|
520 |
+
|
521 |
+
return output_path
|
522 |
+
except Exception as e:
|
523 |
+
print(f"Error during processing: {e}")
|
524 |
+
import traceback
|
525 |
+
traceback.print_exc()
|
526 |
+
raise e
|
527 |
+
|
528 |
+
def vevo_voice(content_wav, style_reference_wav, timbre_reference_wav):
|
529 |
+
temp_content_path = "wav/temp_content.wav"
|
530 |
+
temp_style_path = "wav/temp_style.wav"
|
531 |
+
temp_timbre_path = "wav/temp_timbre.wav"
|
532 |
+
output_path = "wav/output_vevovoice.wav"
|
533 |
+
|
534 |
+
# 检查并处理音频数据
|
535 |
+
if content_wav is None or style_reference_wav is None or timbre_reference_wav is None:
|
536 |
+
raise ValueError("Please upload all required audio files")
|
537 |
+
|
538 |
+
# 处理内容音频格式
|
539 |
+
if isinstance(content_wav, tuple) and len(content_wav) == 2:
|
540 |
+
if isinstance(content_wav[0], np.ndarray):
|
541 |
+
content_data, content_sr = content_wav
|
542 |
+
else:
|
543 |
+
content_sr, content_data = content_wav
|
544 |
+
|
545 |
+
# 确保是单声道
|
546 |
+
if len(content_data.shape) > 1 and content_data.shape[1] > 1:
|
547 |
+
content_data = np.mean(content_data, axis=1)
|
548 |
+
|
549 |
+
# 重采样到24kHz
|
550 |
+
if content_sr != 24000:
|
551 |
+
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
|
552 |
+
content_tensor = torchaudio.functional.resample(content_tensor, content_sr, 24000)
|
553 |
+
content_sr = 24000
|
554 |
+
else:
|
555 |
+
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
|
556 |
+
|
557 |
+
# 归一化音量
|
558 |
+
content_tensor = content_tensor / (torch.max(torch.abs(content_tensor)) + 1e-6) * 0.95
|
559 |
+
else:
|
560 |
+
raise ValueError("Invalid content audio format")
|
561 |
+
|
562 |
+
# 处理风格参考音频格式
|
563 |
+
if isinstance(style_reference_wav, tuple) and len(style_reference_wav) == 2:
|
564 |
+
if isinstance(style_reference_wav[0], np.ndarray):
|
565 |
+
style_data, style_sr = style_reference_wav
|
566 |
+
else:
|
567 |
+
style_sr, style_data = style_reference_wav
|
568 |
+
|
569 |
+
# 确保是单声道
|
570 |
+
if len(style_data.shape) > 1 and style_data.shape[1] > 1:
|
571 |
+
style_data = np.mean(style_data, axis=1)
|
572 |
+
|
573 |
+
# 重采样到24kHz
|
574 |
+
if style_sr != 24000:
|
575 |
+
style_tensor = torch.FloatTensor(style_data).unsqueeze(0)
|
576 |
+
style_tensor = torchaudio.functional.resample(style_tensor, style_sr, 24000)
|
577 |
+
style_sr = 24000
|
578 |
+
else:
|
579 |
+
style_tensor = torch.FloatTensor(style_data).unsqueeze(0)
|
580 |
+
|
581 |
+
# 归一化音量
|
582 |
+
style_tensor = style_tensor / (torch.max(torch.abs(style_tensor)) + 1e-6) * 0.95
|
583 |
+
else:
|
584 |
+
raise ValueError("Invalid style reference audio format")
|
585 |
+
|
586 |
+
# 处理音色参考音频格式
|
587 |
+
if isinstance(timbre_reference_wav, tuple) and len(timbre_reference_wav) == 2:
|
588 |
+
if isinstance(timbre_reference_wav[0], np.ndarray):
|
589 |
+
timbre_data, timbre_sr = timbre_reference_wav
|
590 |
+
else:
|
591 |
+
timbre_sr, timbre_data = timbre_reference_wav
|
592 |
+
|
593 |
+
# 确保是单声道
|
594 |
+
if len(timbre_data.shape) > 1 and timbre_data.shape[1] > 1:
|
595 |
+
timbre_data = np.mean(timbre_data, axis=1)
|
596 |
+
|
597 |
+
# 重采样到24kHz
|
598 |
+
if timbre_sr != 24000:
|
599 |
+
timbre_tensor = torch.FloatTensor(timbre_data).unsqueeze(0)
|
600 |
+
timbre_tensor = torchaudio.functional.resample(timbre_tensor, timbre_sr, 24000)
|
601 |
+
timbre_sr = 24000
|
602 |
+
else:
|
603 |
+
timbre_tensor = torch.FloatTensor(timbre_data).unsqueeze(0)
|
604 |
+
|
605 |
+
# 归一化音量
|
606 |
+
timbre_tensor = timbre_tensor / (torch.max(torch.abs(timbre_tensor)) + 1e-6) * 0.95
|
607 |
+
else:
|
608 |
+
raise ValueError("Invalid timbre reference audio format")
|
609 |
+
|
610 |
+
# 打印debug信息
|
611 |
+
print(f"Content audio shape: {content_tensor.shape}, sample rate: {content_sr}")
|
612 |
+
print(f"Style reference audio shape: {style_tensor.shape}, sample rate: {style_sr}")
|
613 |
+
print(f"Timbre reference audio shape: {timbre_tensor.shape}, sample rate: {timbre_sr}")
|
614 |
+
|
615 |
+
# 保存上传��音频
|
616 |
+
torchaudio.save(temp_content_path, content_tensor, content_sr)
|
617 |
+
torchaudio.save(temp_style_path, style_tensor, style_sr)
|
618 |
+
torchaudio.save(temp_timbre_path, timbre_tensor, timbre_sr)
|
619 |
+
|
620 |
+
try:
|
621 |
+
# 获取管道
|
622 |
+
pipeline = get_pipeline("voice")
|
623 |
+
|
624 |
+
# 推理
|
625 |
+
gen_audio = pipeline.inference_ar_and_fm(
|
626 |
+
src_wav_path=temp_content_path,
|
627 |
+
src_text=None,
|
628 |
+
style_ref_wav_path=temp_style_path,
|
629 |
+
timbre_ref_wav_path=temp_timbre_path,
|
630 |
+
)
|
631 |
+
|
632 |
+
# 检查生成音频是否为数值异常
|
633 |
+
if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any():
|
634 |
+
print("Warning: Generated audio contains NaN or Inf values")
|
635 |
+
gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95)
|
636 |
+
|
637 |
+
print(f"Generated audio shape: {gen_audio.shape}, max: {torch.max(gen_audio)}, min: {torch.min(gen_audio)}")
|
638 |
+
|
639 |
+
# 保存生成的音频
|
640 |
+
save_audio(gen_audio, output_path=output_path)
|
641 |
+
|
642 |
+
return output_path
|
643 |
+
except Exception as e:
|
644 |
+
print(f"Error during processing: {e}")
|
645 |
+
import traceback
|
646 |
+
traceback.print_exc()
|
647 |
+
raise e
|
648 |
+
|
649 |
+
def vevo_tts(text, ref_wav, timbre_ref_wav=None, style_ref_text=None, src_language="en", ref_language="en", style_ref_text_language="en"):
|
650 |
+
temp_ref_path = "wav/temp_ref.wav"
|
651 |
+
temp_timbre_path = "wav/temp_timbre.wav"
|
652 |
+
output_path = "wav/output_vevotts.wav"
|
653 |
+
|
654 |
+
# 检查并处理音频数据
|
655 |
+
if ref_wav is None:
|
656 |
+
raise ValueError("Please upload a reference audio file")
|
657 |
+
|
658 |
+
# 处理参考音频格式
|
659 |
+
if isinstance(ref_wav, tuple) and len(ref_wav) == 2:
|
660 |
+
if isinstance(ref_wav[0], np.ndarray):
|
661 |
+
ref_data, ref_sr = ref_wav
|
662 |
+
else:
|
663 |
+
ref_sr, ref_data = ref_wav
|
664 |
+
|
665 |
+
# 确保是单声道
|
666 |
+
if len(ref_data.shape) > 1 and ref_data.shape[1] > 1:
|
667 |
+
ref_data = np.mean(ref_data, axis=1)
|
668 |
+
|
669 |
+
# 重采样到24kHz
|
670 |
+
if ref_sr != 24000:
|
671 |
+
ref_tensor = torch.FloatTensor(ref_data).unsqueeze(0)
|
672 |
+
ref_tensor = torchaudio.functional.resample(ref_tensor, ref_sr, 24000)
|
673 |
+
ref_sr = 24000
|
674 |
+
else:
|
675 |
+
ref_tensor = torch.FloatTensor(ref_data).unsqueeze(0)
|
676 |
+
|
677 |
+
# 归一化音量
|
678 |
+
ref_tensor = ref_tensor / (torch.max(torch.abs(ref_tensor)) + 1e-6) * 0.95
|
679 |
+
else:
|
680 |
+
raise ValueError("Invalid reference audio format")
|
681 |
+
|
682 |
+
# 打印debug信息
|
683 |
+
print(f"Reference audio shape: {ref_tensor.shape}, sample rate: {ref_sr}")
|
684 |
+
if style_ref_text:
|
685 |
+
print(f"Style reference text: {style_ref_text}, language: {style_ref_text_language}")
|
686 |
+
|
687 |
+
# 保存上传的音频
|
688 |
+
torchaudio.save(temp_ref_path, ref_tensor, ref_sr)
|
689 |
+
|
690 |
+
if timbre_ref_wav is not None:
|
691 |
+
if isinstance(timbre_ref_wav, tuple) and len(timbre_ref_wav) == 2:
|
692 |
+
if isinstance(timbre_ref_wav[0], np.ndarray):
|
693 |
+
timbre_data, timbre_sr = timbre_ref_wav
|
694 |
+
else:
|
695 |
+
timbre_sr, timbre_data = timbre_ref_wav
|
696 |
+
|
697 |
+
# 确保是单声道
|
698 |
+
if len(timbre_data.shape) > 1 and timbre_data.shape[1] > 1:
|
699 |
+
timbre_data = np.mean(timbre_data, axis=1)
|
700 |
+
|
701 |
+
# 重采样到24kHz
|
702 |
+
if timbre_sr != 24000:
|
703 |
+
timbre_tensor = torch.FloatTensor(timbre_data).unsqueeze(0)
|
704 |
+
timbre_tensor = torchaudio.functional.resample(timbre_tensor, timbre_sr, 24000)
|
705 |
+
timbre_sr = 24000
|
706 |
+
else:
|
707 |
+
timbre_tensor = torch.FloatTensor(timbre_data).unsqueeze(0)
|
708 |
+
|
709 |
+
# 归一化音量
|
710 |
+
timbre_tensor = timbre_tensor / (torch.max(torch.abs(timbre_tensor)) + 1e-6) * 0.95
|
711 |
+
|
712 |
+
print(f"Timbre reference audio shape: {timbre_tensor.shape}, sample rate: {timbre_sr}")
|
713 |
+
torchaudio.save(temp_timbre_path, timbre_tensor, timbre_sr)
|
714 |
+
else:
|
715 |
+
raise ValueError("Invalid timbre reference audio format")
|
716 |
+
else:
|
717 |
+
temp_timbre_path = temp_ref_path
|
718 |
+
|
719 |
+
try:
|
720 |
+
# 获取管道
|
721 |
+
pipeline = get_pipeline("tts")
|
722 |
+
|
723 |
+
# 推理
|
724 |
+
gen_audio = pipeline.inference_ar_and_fm(
|
725 |
+
src_wav_path=None,
|
726 |
+
src_text=text,
|
727 |
+
style_ref_wav_path=temp_ref_path,
|
728 |
+
timbre_ref_wav_path=temp_timbre_path,
|
729 |
+
style_ref_wav_text=style_ref_text,
|
730 |
+
src_text_language=src_language,
|
731 |
+
style_ref_wav_text_language=style_ref_text_language,
|
732 |
+
)
|
733 |
+
|
734 |
+
# 检查生成音频是否为数值异常
|
735 |
+
if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any():
|
736 |
+
print("Warning: Generated audio contains NaN or Inf values")
|
737 |
+
gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95)
|
738 |
+
|
739 |
+
print(f"Generated audio shape: {gen_audio.shape}, max: {torch.max(gen_audio)}, min: {torch.min(gen_audio)}")
|
740 |
+
|
741 |
+
# 保存生成的音频
|
742 |
+
save_audio(gen_audio, output_path=output_path)
|
743 |
+
|
744 |
+
return output_path
|
745 |
+
except Exception as e:
|
746 |
+
print(f"Error during processing: {e}")
|
747 |
+
import traceback
|
748 |
+
traceback.print_exc()
|
749 |
+
raise e
|
750 |
+
|
751 |
+
# 创建Gradio界面
|
752 |
+
with gr.Blocks(title="Vevo DEMO") as demo:
|
753 |
+
gr.Markdown("# Vevo DEMO")
|
754 |
+
# 添加链接标签行
|
755 |
+
with gr.Row(elem_id="links_row"):
|
756 |
+
gr.HTML("""
|
757 |
+
<div style="display: flex; justify-content: flex-start; gap: 8px; margin: 0 0; padding-left: 0px;">
|
758 |
+
<a href="https://arxiv.org/abs/2502.07243" target="_blank" style="text-decoration: none;">
|
759 |
+
<img alt="arXiv Paper" src="https://img.shields.io/badge/arXiv-Paper-red">
|
760 |
+
</a>
|
761 |
+
<a href="https://openreview.net/pdf?id=anQDiQZhDP" target="_blank" style="text-decoration: none;">
|
762 |
+
<img alt="ICLR Paper" src="https://img.shields.io/badge/ICLR-Paper-64b63a">
|
763 |
+
</a>
|
764 |
+
<a href="https://huggingface.co/amphion/Vevo" target="_blank" style="text-decoration: none;">
|
765 |
+
<img alt="HuggingFace Model" src="https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Model-yellow">
|
766 |
+
</a>
|
767 |
+
<a href="https://github.com/open-mmlab/Amphion/tree/main/models/vc/vevo" target="_blank" style="text-decoration: none;">
|
768 |
+
<img alt="GitHub Repo" src="https://img.shields.io/badge/GitHub-Repo-blue">
|
769 |
+
</a>
|
770 |
+
</div>
|
771 |
+
""")
|
772 |
+
|
773 |
+
with gr.Tab("Vevo-Timbre"):
|
774 |
+
gr.Markdown("### Vevo-Timbre: Maintain style but transfer timbre")
|
775 |
+
with gr.Row():
|
776 |
+
with gr.Column():
|
777 |
+
timbre_content = gr.Audio(label="Source Audio", type="numpy")
|
778 |
+
timbre_reference = gr.Audio(label="Timbre Reference", type="numpy")
|
779 |
+
timbre_button = gr.Button("Generate")
|
780 |
+
with gr.Column():
|
781 |
+
timbre_output = gr.Audio(label="Result")
|
782 |
+
timbre_button.click(vevo_timbre, inputs=[timbre_content, timbre_reference], outputs=timbre_output)
|
783 |
+
|
784 |
+
with gr.Tab("Vevo-Style"):
|
785 |
+
gr.Markdown("### Vevo-Style: Maintain timbre but transfer style (accent, emotion, etc.)")
|
786 |
+
with gr.Row():
|
787 |
+
with gr.Column():
|
788 |
+
style_content = gr.Audio(label="Source Audio", type="numpy")
|
789 |
+
style_reference = gr.Audio(label="Style Reference", type="numpy")
|
790 |
+
style_button = gr.Button("Generate")
|
791 |
+
with gr.Column():
|
792 |
+
style_output = gr.Audio(label="Result")
|
793 |
+
style_button.click(vevo_style, inputs=[style_content, style_reference], outputs=style_output)
|
794 |
+
|
795 |
+
with gr.Tab("Vevo-Voice"):
|
796 |
+
gr.Markdown("### Vevo-Voice: Transfers both style and timbre with separate references")
|
797 |
+
with gr.Row():
|
798 |
+
with gr.Column():
|
799 |
+
voice_content = gr.Audio(label="Source Audio", type="numpy")
|
800 |
+
voice_style_reference = gr.Audio(label="Style Reference", type="numpy")
|
801 |
+
voice_timbre_reference = gr.Audio(label="Timbre Reference", type="numpy")
|
802 |
+
voice_button = gr.Button("Generate")
|
803 |
+
with gr.Column():
|
804 |
+
voice_output = gr.Audio(label="Result")
|
805 |
+
voice_button.click(vevo_voice, inputs=[voice_content, voice_style_reference, voice_timbre_reference], outputs=voice_output)
|
806 |
+
|
807 |
+
|
808 |
+
|
809 |
+
with gr.Tab("Vevo-TTS"):
|
810 |
+
gr.Markdown("### Vevo-TTS: Text-to-speech with separate style and timbre references")
|
811 |
+
with gr.Row():
|
812 |
+
with gr.Column():
|
813 |
+
tts_text = gr.Textbox(label="Target Text", placeholder="Enter text to synthesize...", lines=3)
|
814 |
+
tts_src_language = gr.Dropdown(["en", "zh", "de", "fr", "ja", "ko"], label="Text Language", value="en")
|
815 |
+
tts_reference = gr.Audio(label="Style Reference", type="numpy")
|
816 |
+
tts_style_ref_text = gr.Textbox(label="Style Reference Text", placeholder="Enter style reference text...", lines=3)
|
817 |
+
tts_style_ref_text_language = gr.Dropdown(["en", "zh", "de", "fr", "ja", "ko"], label="Style Reference Text Language", value="en")
|
818 |
+
tts_timbre_reference = gr.Audio(label="Timbre Reference", type="numpy")
|
819 |
+
tts_button = gr.Button("Generate")
|
820 |
+
with gr.Column():
|
821 |
+
tts_output = gr.Audio(label="Result")
|
822 |
+
|
823 |
+
tts_button.click(
|
824 |
+
vevo_tts,
|
825 |
+
inputs=[tts_text, tts_reference, tts_timbre_reference, tts_style_ref_text, tts_src_language, tts_style_ref_text_language],
|
826 |
+
outputs=tts_output
|
827 |
+
)
|
828 |
+
|
829 |
+
gr.Markdown("""
|
830 |
+
## About VEVO
|
831 |
+
VEVO is a versatile voice synthesis and conversion model that offers four main functionalities:
|
832 |
+
1. **Vevo-Style**: Maintains timbre but transfers style (accent, emotion, etc.)
|
833 |
+
2. **Vevo-Timbre**: Maintains style but transfers timbre
|
834 |
+
3. **Vevo-Voice**: Transfers both style and timbre with separate references
|
835 |
+
4. **Vevo-TTS**: Text-to-speech with separate style and timbre references
|
836 |
+
|
837 |
+
For more information, visit the [Amphion project](https://github.com/open-mmlab/Amphion)
|
838 |
+
""")
|
839 |
+
|
840 |
+
# 启动应用
|
841 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio>=3.50.2
|
2 |
+
torch>=2.0.0
|
3 |
+
torchaudio>=2.0.0
|
4 |
+
numpy>=1.20.0
|
5 |
+
huggingface_hub>=0.14.1
|
6 |
+
librosa>=0.9.2
|
7 |
+
PyYAML>=6.0
|
8 |
+
accelerate>=0.20.3
|
9 |
+
safetensors>=0.3.1
|
10 |
+
phonemizer>=3.2.0
|
11 |
+
setuptools
|
12 |
+
onnxruntime
|
13 |
+
transformers==4.41.2
|
14 |
+
unidecode
|
15 |
+
scipy>=1.12.0
|
16 |
+
encodec
|
17 |
+
g2p_en
|
18 |
+
jieba
|
19 |
+
cn2an
|
20 |
+
pypinyin
|
21 |
+
langsegment==0.2.0
|
22 |
+
pyopenjtalk
|
23 |
+
pykakasi
|
24 |
+
json5
|
25 |
+
black>=24.1.1
|
26 |
+
ruamel.yaml
|
27 |
+
tqdm
|
28 |
+
openai-whisper
|
29 |
+
ipython
|
30 |
+
pyworld
|