Vevo / app.py
积极的屁孩
fix path
9755f3f
import os
import sys
import importlib.util
import site
import json
import torch
import gradio as gr
import torchaudio
import numpy as np
from huggingface_hub import snapshot_download, hf_hub_download
import subprocess
import re
import spaces
# 创建一个全局变量来跟踪已下载的资源
# Create a global variable to track downloaded resources
downloaded_resources = {
"configs": False,
"tokenizer_vq32": False,
"tokenizer_vq8192": False,
"ar_Vq32ToVq8192": False,
"ar_PhoneToVq8192": False,
"fmt_Vq8192ToMels": False,
"vocoder": False
}
def install_espeak():
"""Detect and install espeak-ng dependency"""
try:
# Check if espeak-ng is already installed
result = subprocess.run(["which", "espeak-ng"], capture_output=True, text=True)
if result.returncode != 0:
print("Detected espeak-ng not installed in the system, attempting to install...")
# Try to install espeak-ng and its data using apt-get
subprocess.run(["apt-get", "update"], check=True)
# Install espeak-ng and the corresponding language data package
subprocess.run(["apt-get", "install", "-y", "espeak-ng", "espeak-ng-data"], check=True)
print("espeak-ng and its data packages installed successfully!")
else:
print("espeak-ng is already installed in the system.")
# Even if already installed, try to update data to ensure integrity (optional but sometimes helpful)
# print("Attempting to update espeak-ng data...")
# subprocess.run(["apt-get", "update"], check=True)
# subprocess.run(["apt-get", "install", "--only-upgrade", "-y", "espeak-ng-data"], check=True)
# Verify Chinese support (optional)
try:
voices_result = subprocess.run(["espeak-ng", "--voices=cmn"], capture_output=True, text=True, check=True)
if "cmn" in voices_result.stdout:
print("espeak-ng supports 'cmn' language.")
else:
print("Warning: espeak-ng is installed, but 'cmn' language still seems unavailable.")
except Exception as e:
print(f"Error verifying espeak-ng Chinese support (may not affect functionality): {e}")
except Exception as e:
print(f"Error installing espeak-ng: {e}")
print("Please try to run manually: apt-get update && apt-get install -y espeak-ng espeak-ng-data")
# Install espeak before all other operations
install_espeak()
def patch_langsegment_init():
try:
# Try to find the location of the LangSegment package
spec = importlib.util.find_spec("LangSegment")
if spec is None or spec.origin is None:
print("Unable to locate LangSegment package.")
return
# Build the path to __init__.py
init_path = os.path.join(os.path.dirname(spec.origin), '__init__.py')
if not os.path.exists(init_path):
print(f"LangSegment __init__.py file not found at: {init_path}")
# Try to find in site-packages, applicable in some environments
for site_pkg_path in site.getsitepackages():
potential_path = os.path.join(site_pkg_path, 'LangSegment', '__init__.py')
if os.path.exists(potential_path):
init_path = potential_path
print(f"Found __init__.py in site-packages: {init_path}")
break
else: # If the loop ends normally (no break)
print(f"Also unable to find __init__.py in site-packages")
return
print(f"Attempting to read LangSegment __init__.py: {init_path}")
with open(init_path, 'r') as f:
lines = f.readlines()
modified = False
new_lines = []
target_line_prefix = "from .LangSegment import"
for line in lines:
stripped_line = line.strip()
if stripped_line.startswith(target_line_prefix):
if 'setLangfilters' in stripped_line or 'getLangfilters' in stripped_line:
print(f"Found line that needs modification: {stripped_line}")
# Remove setLangfilters and getLangfilters
modified_line = stripped_line.replace(',setLangfilters', '')
modified_line = modified_line.replace(',getLangfilters', '')
# Ensure comma handling is correct (e.g., if they are the last items)
modified_line = modified_line.replace('setLangfilters,', '')
modified_line = modified_line.replace('getLangfilters,', '')
# If they are the only extra imports, remove any redundant commas
modified_line = modified_line.rstrip(',')
new_lines.append(modified_line + '\n')
modified = True
print(f"Modified line: {modified_line.strip()}")
else:
new_lines.append(line) # Line is fine, keep as is
else:
new_lines.append(line) # Non-target line, keep as is
if modified:
print(f"Attempting to write back modified LangSegment __init__.py to: {init_path}")
try:
with open(init_path, 'w') as f:
f.writelines(new_lines)
print("LangSegment __init__.py modified successfully.")
# Try to reload the module to make changes effective (may not work, depending on import chain)
try:
import LangSegment
importlib.reload(LangSegment)
print("LangSegment module has been attempted to reload.")
except Exception as reload_e:
print(f"Error reloading LangSegment (may have no impact): {reload_e}")
except PermissionError:
print(f"Error: Insufficient permissions to modify {init_path}. Consider modifying requirements.txt.")
except Exception as write_e:
print(f"Other error occurred when writing LangSegment __init__.py: {write_e}")
else:
print("LangSegment __init__.py doesn't need modification.")
except ImportError:
print("LangSegment package not found, unable to fix.")
except Exception as e:
print(f"Unexpected error occurred when fixing LangSegment package: {e}")
# Execute the fix before all other imports (especially Amphion) that might trigger LangSegment
patch_langsegment_init()
# Clone Amphion repository
if not os.path.exists("Amphion"):
subprocess.run(["git", "clone", "https://github.com/open-mmlab/Amphion.git"])
os.chdir("Amphion")
else:
if not os.getcwd().endswith("Amphion"):
os.chdir("Amphion")
# Add Amphion to the path
if os.path.dirname(os.path.abspath("Amphion")) not in sys.path:
sys.path.append(os.path.dirname(os.path.abspath("Amphion")))
# Ensure needed directories exist
os.makedirs("wav", exist_ok=True)
os.makedirs("ckpts/Vevo", exist_ok=True)
from models.vc.vevo.vevo_utils import VevoInferencePipeline, save_audio, load_wav
# Download and setup config files
def setup_configs():
if downloaded_resources["configs"]:
print("Config files already downloaded, skipping...")
return
config_path = "models/vc/vevo/config"
os.makedirs(config_path, exist_ok=True)
config_files = [
"PhoneToVq8192.json",
"Vocoder.json",
"Vq32ToVq8192.json",
"Vq8192ToMels.json",
"hubert_large_l18_c32.yaml",
]
for file in config_files:
file_path = f"{config_path}/{file}"
if not os.path.exists(file_path):
try:
file_data = hf_hub_download(
repo_id="amphion/Vevo",
filename=f"config/{file}",
repo_type="model",
)
os.makedirs(os.path.dirname(file_path), exist_ok=True)
# Copy file to target location
subprocess.run(["cp", file_data, file_path])
except Exception as e:
print(f"Error downloading config file {file}: {e}")
downloaded_resources["configs"] = True
setup_configs()
# Device configuration
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
print(f"Using device: {device}")
# Initialize pipeline dictionary
inference_pipelines = {}
# Download all necessary model resources at startup
def preload_all_resources():
print("Preloading all model resources...")
# Download configuration files
setup_configs()
# Store the downloaded model paths
global downloaded_content_tokenizer_path
global downloaded_content_style_tokenizer_path
global downloaded_ar_vq32_path
global downloaded_ar_phone_path
global downloaded_fmt_path
global downloaded_vocoder_path
# Download Content Tokenizer (vq32)
if not downloaded_resources["tokenizer_vq32"]:
print("Preloading Content Tokenizer (vq32)...")
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["tokenizer/vq32/*"],
)
downloaded_content_tokenizer_path = local_dir
downloaded_resources["tokenizer_vq32"] = True
print("Content Tokenizer (vq32) download completed")
# Download Content-Style Tokenizer (vq8192)
if not downloaded_resources["tokenizer_vq8192"]:
print("Preloading Content-Style Tokenizer (vq8192)...")
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["tokenizer/vq8192/*"],
)
downloaded_content_style_tokenizer_path = local_dir
downloaded_resources["tokenizer_vq8192"] = True
print("Content-Style Tokenizer (vq8192) download completed")
# Download Autoregressive Transformer (Vq32ToVq8192)
if not downloaded_resources["ar_Vq32ToVq8192"]:
print("Preloading Autoregressive Transformer (Vq32ToVq8192)...")
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["contentstyle_modeling/Vq32ToVq8192/*"],
)
downloaded_ar_vq32_path = local_dir
downloaded_resources["ar_Vq32ToVq8192"] = True
print("Autoregressive Transformer (Vq32ToVq8192) download completed")
# Download Autoregressive Transformer (PhoneToVq8192)
if not downloaded_resources["ar_PhoneToVq8192"]:
print("Preloading Autoregressive Transformer (PhoneToVq8192)...")
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["contentstyle_modeling/PhoneToVq8192/*"],
)
downloaded_ar_phone_path = local_dir
downloaded_resources["ar_PhoneToVq8192"] = True
print("Autoregressive Transformer (PhoneToVq8192) download completed")
# Download Flow Matching Transformer
if not downloaded_resources["fmt_Vq8192ToMels"]:
print("Preloading Flow Matching Transformer (Vq8192ToMels)...")
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["acoustic_modeling/Vq8192ToMels/*"],
)
downloaded_fmt_path = local_dir
downloaded_resources["fmt_Vq8192ToMels"] = True
print("Flow Matching Transformer (Vq8192ToMels) download completed")
# Download Vocoder
if not downloaded_resources["vocoder"]:
print("Preloading Vocoder...")
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["acoustic_modeling/Vocoder/*"],
)
downloaded_vocoder_path = local_dir
downloaded_resources["vocoder"] = True
print("Vocoder download completed")
print("All model resources preloading completed!")
# Initialize path variables to store downloaded model paths
downloaded_content_tokenizer_path = None
downloaded_content_style_tokenizer_path = None
downloaded_ar_vq32_path = None
downloaded_ar_phone_path = None
downloaded_fmt_path = None
downloaded_vocoder_path = None
# Preload all resources before creating the Gradio interface
preload_all_resources()
def get_pipeline(pipeline_type):
if pipeline_type in inference_pipelines:
return inference_pipelines[pipeline_type]
# Initialize pipeline based on the required pipeline type
if pipeline_type == "style" or pipeline_type == "voice":
# Use already downloaded Content Tokenizer
if downloaded_resources["tokenizer_vq32"]:
content_tokenizer_ckpt_path = os.path.join(
downloaded_content_tokenizer_path, "tokenizer/vq32/hubert_large_l18_c32.pkl"
)
else:
# Fallback to direct download
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["tokenizer/vq32/*"],
)
content_tokenizer_ckpt_path = os.path.join(
local_dir, "tokenizer/vq32/hubert_large_l18_c32.pkl"
)
# Use already downloaded Content-Style Tokenizer
if downloaded_resources["tokenizer_vq8192"]:
content_style_tokenizer_ckpt_path = os.path.join(
downloaded_content_style_tokenizer_path, "tokenizer/vq8192"
)
else:
# Fallback to direct download
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["tokenizer/vq8192/*"],
)
content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192")
# Use already downloaded Autoregressive Transformer
ar_cfg_path = "./models/vc/vevo/config/Vq32ToVq8192.json"
if downloaded_resources["ar_Vq32ToVq8192"]:
ar_ckpt_path = os.path.join(
downloaded_ar_vq32_path, "contentstyle_modeling/Vq32ToVq8192"
)
else:
# Fallback to direct download
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["contentstyle_modeling/Vq32ToVq8192/*"],
)
ar_ckpt_path = os.path.join(local_dir, "contentstyle_modeling/Vq32ToVq8192")
# Use already downloaded Flow Matching Transformer
fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json"
if downloaded_resources["fmt_Vq8192ToMels"]:
fmt_ckpt_path = os.path.join(
downloaded_fmt_path, "acoustic_modeling/Vq8192ToMels"
)
else:
# Fallback to direct download
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["acoustic_modeling/Vq8192ToMels/*"],
)
fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels")
# Use already downloaded Vocoder
vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json"
if downloaded_resources["vocoder"]:
vocoder_ckpt_path = os.path.join(
downloaded_vocoder_path, "acoustic_modeling/Vocoder"
)
else:
# Fallback to direct download
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["acoustic_modeling/Vocoder/*"],
)
vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder")
# Initialize pipeline
inference_pipeline = VevoInferencePipeline(
content_tokenizer_ckpt_path=content_tokenizer_ckpt_path,
content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path,
ar_cfg_path=ar_cfg_path,
ar_ckpt_path=ar_ckpt_path,
fmt_cfg_path=fmt_cfg_path,
fmt_ckpt_path=fmt_ckpt_path,
vocoder_cfg_path=vocoder_cfg_path,
vocoder_ckpt_path=vocoder_ckpt_path,
device=device,
)
elif pipeline_type == "timbre":
# Use already downloaded Content-Style Tokenizer
if downloaded_resources["tokenizer_vq8192"]:
content_style_tokenizer_ckpt_path = os.path.join(
downloaded_content_style_tokenizer_path, "tokenizer/vq8192"
)
else:
# Fallback to direct download
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["tokenizer/vq8192/*"],
)
content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192")
# Use already downloaded Flow Matching Transformer
fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json"
if downloaded_resources["fmt_Vq8192ToMels"]:
fmt_ckpt_path = os.path.join(
downloaded_fmt_path, "acoustic_modeling/Vq8192ToMels"
)
else:
# Fallback to direct download
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["acoustic_modeling/Vq8192ToMels/*"],
)
fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels")
# Use already downloaded Vocoder
vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json"
if downloaded_resources["vocoder"]:
vocoder_ckpt_path = os.path.join(
downloaded_vocoder_path, "acoustic_modeling/Vocoder"
)
else:
# Fallback to direct download
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["acoustic_modeling/Vocoder/*"],
)
vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder")
# Initialize pipeline
inference_pipeline = VevoInferencePipeline(
content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path,
fmt_cfg_path=fmt_cfg_path,
fmt_ckpt_path=fmt_ckpt_path,
vocoder_cfg_path=vocoder_cfg_path,
vocoder_ckpt_path=vocoder_ckpt_path,
device=device,
)
elif pipeline_type == "tts":
# Use already downloaded Content-Style Tokenizer
if downloaded_resources["tokenizer_vq8192"]:
content_style_tokenizer_ckpt_path = os.path.join(
downloaded_content_style_tokenizer_path, "tokenizer/vq8192"
)
else:
# Fallback to direct download
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["tokenizer/vq8192/*"],
)
content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192")
# Use already downloaded Autoregressive Transformer (TTS specific)
ar_cfg_path = "./models/vc/vevo/config/PhoneToVq8192.json"
if downloaded_resources["ar_PhoneToVq8192"]:
ar_ckpt_path = os.path.join(
downloaded_ar_phone_path, "contentstyle_modeling/PhoneToVq8192"
)
else:
# Fallback to direct download
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["contentstyle_modeling/PhoneToVq8192/*"],
)
ar_ckpt_path = os.path.join(local_dir, "contentstyle_modeling/PhoneToVq8192")
# Use already downloaded Flow Matching Transformer
fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json"
if downloaded_resources["fmt_Vq8192ToMels"]:
fmt_ckpt_path = os.path.join(
downloaded_fmt_path, "acoustic_modeling/Vq8192ToMels"
)
else:
# Fallback to direct download
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["acoustic_modeling/Vq8192ToMels/*"],
)
fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels")
# Use already downloaded Vocoder
vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json"
if downloaded_resources["vocoder"]:
vocoder_ckpt_path = os.path.join(
downloaded_vocoder_path, "acoustic_modeling/Vocoder"
)
else:
# Fallback to direct download
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["acoustic_modeling/Vocoder/*"],
)
vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder")
# Initialize pipeline
inference_pipeline = VevoInferencePipeline(
content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path,
ar_cfg_path=ar_cfg_path,
ar_ckpt_path=ar_ckpt_path,
fmt_cfg_path=fmt_cfg_path,
fmt_ckpt_path=fmt_ckpt_path,
vocoder_cfg_path=vocoder_cfg_path,
vocoder_ckpt_path=vocoder_ckpt_path,
device=device,
)
# Cache pipeline instance
inference_pipelines[pipeline_type] = inference_pipeline
return inference_pipeline
# Implement VEVO functionality functions
@spaces.GPU()
def vevo_style(content_wav, style_wav):
temp_content_path = "wav/temp_content.wav"
temp_style_path = "wav/temp_style.wav"
output_path = "wav/output_vevostyle.wav"
# Check and process audio data
if content_wav is None or style_wav is None:
raise ValueError("Please upload audio files")
# Process audio format
if isinstance(content_wav, tuple) and len(content_wav) == 2:
if isinstance(content_wav[0], np.ndarray):
content_data, content_sr = content_wav
else:
content_sr, content_data = content_wav
# Ensure single channel
if len(content_data.shape) > 1 and content_data.shape[1] > 1:
content_data = np.mean(content_data, axis=1)
# Resample to 24kHz
if content_sr != 24000:
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
content_tensor = torchaudio.functional.resample(content_tensor, content_sr, 24000)
content_sr = 24000
else:
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
# Normalize volume
content_tensor = content_tensor / (torch.max(torch.abs(content_tensor)) + 1e-6) * 0.95
else:
raise ValueError("Invalid content audio format")
if isinstance(style_wav[0], np.ndarray):
style_data, style_sr = style_wav
else:
style_sr, style_data = style_wav
# Ensure single channel
if len(style_data.shape) > 1 and style_data.shape[1] > 1:
style_data = np.mean(style_data, axis=1)
# Resample to 24kHz
if style_sr != 24000:
style_tensor = torch.FloatTensor(style_data).unsqueeze(0)
style_tensor = torchaudio.functional.resample(style_tensor, style_sr, 24000)
style_sr = 24000
else:
style_tensor = torch.FloatTensor(style_data).unsqueeze(0)
# Normalize volume
style_tensor = style_tensor / (torch.max(torch.abs(style_tensor)) + 1e-6) * 0.95
# Print debug information
print(f"Content audio shape: {content_tensor.shape}, sample rate: {content_sr}")
print(f"Style audio shape: {style_tensor.shape}, sample rate: {style_sr}")
# Save audio
torchaudio.save(temp_content_path, content_tensor, content_sr)
torchaudio.save(temp_style_path, style_tensor, style_sr)
try:
# Get pipeline
pipeline = get_pipeline("style")
# Inference
gen_audio = pipeline.inference_ar_and_fm(
src_wav_path=temp_content_path,
src_text=None,
style_ref_wav_path=temp_style_path,
timbre_ref_wav_path=temp_content_path,
)
# Check if generated audio is numerical anomaly
if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any():
print("Warning: Generated audio contains NaN or Inf values")
gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95)
print(f"Generated audio shape: {gen_audio.shape}, max: {torch.max(gen_audio)}, min: {torch.min(gen_audio)}")
# Save generated audio
save_audio(gen_audio, output_path=output_path)
return output_path
except Exception as e:
print(f"Error during processing: {e}")
import traceback
traceback.print_exc()
raise e
@spaces.GPU()
def vevo_timbre(content_wav, reference_wav):
temp_content_path = "wav/temp_content.wav"
temp_reference_path = "wav/temp_reference.wav"
output_path = "wav/output_vevotimbre.wav"
# Check and process audio data
if content_wav is None or reference_wav is None:
raise ValueError("Please upload audio files")
# Process content audio format
if isinstance(content_wav, tuple) and len(content_wav) == 2:
if isinstance(content_wav[0], np.ndarray):
content_data, content_sr = content_wav
else:
content_sr, content_data = content_wav
# Ensure single channel
if len(content_data.shape) > 1 and content_data.shape[1] > 1:
content_data = np.mean(content_data, axis=1)
# Resample to 24kHz
if content_sr != 24000:
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
content_tensor = torchaudio.functional.resample(content_tensor, content_sr, 24000)
content_sr = 24000
else:
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
# Normalize volume
content_tensor = content_tensor / (torch.max(torch.abs(content_tensor)) + 1e-6) * 0.95
else:
raise ValueError("Invalid content audio format")
# Process reference audio format
if isinstance(reference_wav, tuple) and len(reference_wav) == 2:
if isinstance(reference_wav[0], np.ndarray):
reference_data, reference_sr = reference_wav
else:
reference_sr, reference_data = reference_wav
# Ensure single channel
if len(reference_data.shape) > 1 and reference_data.shape[1] > 1:
reference_data = np.mean(reference_data, axis=1)
# Resample to 24kHz
if reference_sr != 24000:
reference_tensor = torch.FloatTensor(reference_data).unsqueeze(0)
reference_tensor = torchaudio.functional.resample(reference_tensor, reference_sr, 24000)
reference_sr = 24000
else:
reference_tensor = torch.FloatTensor(reference_data).unsqueeze(0)
# Normalize volume
reference_tensor = reference_tensor / (torch.max(torch.abs(reference_tensor)) + 1e-6) * 0.95
else:
raise ValueError("Invalid reference audio format")
# Print debug information
print(f"Content audio shape: {content_tensor.shape}, sample rate: {content_sr}")
print(f"Reference audio shape: {reference_tensor.shape}, sample rate: {reference_sr}")
# Save uploaded audio
torchaudio.save(temp_content_path, content_tensor, content_sr)
torchaudio.save(temp_reference_path, reference_tensor, reference_sr)
try:
# Get pipeline
pipeline = get_pipeline("timbre")
# Inference
gen_audio = pipeline.inference_fm(
src_wav_path=temp_content_path,
timbre_ref_wav_path=temp_reference_path,
flow_matching_steps=32,
)
# Check if generated audio is numerical anomaly
if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any():
print("Warning: Generated audio contains NaN or Inf values")
gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95)
print(f"Generated audio shape: {gen_audio.shape}, max: {torch.max(gen_audio)}, min: {torch.min(gen_audio)}")
# Save generated audio
save_audio(gen_audio, output_path=output_path)
return output_path
except Exception as e:
print(f"Error during processing: {e}")
import traceback
traceback.print_exc()
raise e
@spaces.GPU()
def vevo_voice(content_wav, style_reference_wav, timbre_reference_wav):
temp_content_path = "wav/temp_content.wav"
temp_style_path = "wav/temp_style.wav"
temp_timbre_path = "wav/temp_timbre.wav"
output_path = "wav/output_vevovoice.wav"
# Check and process audio data
if content_wav is None or style_reference_wav is None or timbre_reference_wav is None:
raise ValueError("Please upload all required audio files")
# Process content audio format
if isinstance(content_wav, tuple) and len(content_wav) == 2:
if isinstance(content_wav[0], np.ndarray):
content_data, content_sr = content_wav
else:
content_sr, content_data = content_wav
# Ensure single channel
if len(content_data.shape) > 1 and content_data.shape[1] > 1:
content_data = np.mean(content_data, axis=1)
# Resample to 24kHz
if content_sr != 24000:
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
content_tensor = torchaudio.functional.resample(content_tensor, content_sr, 24000)
content_sr = 24000
else:
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
# Normalize volume
content_tensor = content_tensor / (torch.max(torch.abs(content_tensor)) + 1e-6) * 0.95
else:
raise ValueError("Invalid content audio format")
# Process style reference audio format
if isinstance(style_reference_wav, tuple) and len(style_reference_wav) == 2:
if isinstance(style_reference_wav[0], np.ndarray):
style_data, style_sr = style_reference_wav
else:
style_sr, style_data = style_reference_wav
# Ensure single channel
if len(style_data.shape) > 1 and style_data.shape[1] > 1:
style_data = np.mean(style_data, axis=1)
# Resample to 24kHz
if style_sr != 24000:
style_tensor = torch.FloatTensor(style_data).unsqueeze(0)
style_tensor = torchaudio.functional.resample(style_tensor, style_sr, 24000)
style_sr = 24000
else:
style_tensor = torch.FloatTensor(style_data).unsqueeze(0)
# Normalize volume
style_tensor = style_tensor / (torch.max(torch.abs(style_tensor)) + 1e-6) * 0.95
else:
raise ValueError("Invalid style reference audio format")
# Process timbre reference audio format
if isinstance(timbre_reference_wav, tuple) and len(timbre_reference_wav) == 2:
if isinstance(timbre_reference_wav[0], np.ndarray):
timbre_data, timbre_sr = timbre_reference_wav
else:
timbre_sr, timbre_data = timbre_reference_wav
# Ensure single channel
if len(timbre_data.shape) > 1 and timbre_data.shape[1] > 1:
timbre_data = np.mean(timbre_data, axis=1)
# Resample to 24kHz
if timbre_sr != 24000:
timbre_tensor = torch.FloatTensor(timbre_data).unsqueeze(0)
timbre_tensor = torchaudio.functional.resample(timbre_tensor, timbre_sr, 24000)
timbre_sr = 24000
else:
timbre_tensor = torch.FloatTensor(timbre_data).unsqueeze(0)
# Normalize volume
timbre_tensor = timbre_tensor / (torch.max(torch.abs(timbre_tensor)) + 1e-6) * 0.95
else:
raise ValueError("Invalid timbre reference audio format")
# Print debug information
print(f"Content audio shape: {content_tensor.shape}, sample rate: {content_sr}")
print(f"Style reference audio shape: {style_tensor.shape}, sample rate: {style_sr}")
print(f"Timbre reference audio shape: {timbre_tensor.shape}, sample rate: {timbre_sr}")
# Save uploaded audio
torchaudio.save(temp_content_path, content_tensor, content_sr)
torchaudio.save(temp_style_path, style_tensor, style_sr)
torchaudio.save(temp_timbre_path, timbre_tensor, timbre_sr)
try:
# Get pipeline
pipeline = get_pipeline("voice")
# Inference
gen_audio = pipeline.inference_ar_and_fm(
src_wav_path=temp_content_path,
src_text=None,
style_ref_wav_path=temp_style_path,
timbre_ref_wav_path=temp_timbre_path,
)
# Check if generated audio is numerical anomaly
if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any():
print("Warning: Generated audio contains NaN or Inf values")
gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95)
print(f"Generated audio shape: {gen_audio.shape}, max: {torch.max(gen_audio)}, min: {torch.min(gen_audio)}")
# Save generated audio
save_audio(gen_audio, output_path=output_path)
return output_path
except Exception as e:
print(f"Error during processing: {e}")
import traceback
traceback.print_exc()
raise e
@spaces.GPU()
def vevo_tts(text, ref_wav, timbre_ref_wav=None, style_ref_text=None, src_language="en", ref_language="en", style_ref_text_language="en"):
temp_ref_path = "wav/temp_ref.wav"
temp_timbre_path = "wav/temp_timbre.wav"
output_path = "wav/output_vevotts.wav"
# Check and process audio data
if ref_wav is None:
raise ValueError("Please upload a reference audio file")
# Process reference audio format
if isinstance(ref_wav, tuple) and len(ref_wav) == 2:
if isinstance(ref_wav[0], np.ndarray):
ref_data, ref_sr = ref_wav
else:
ref_sr, ref_data = ref_wav
# Ensure single channel
if len(ref_data.shape) > 1 and ref_data.shape[1] > 1:
ref_data = np.mean(ref_data, axis=1)
# Resample to 24kHz
if ref_sr != 24000:
ref_tensor = torch.FloatTensor(ref_data).unsqueeze(0)
ref_tensor = torchaudio.functional.resample(ref_tensor, ref_sr, 24000)
ref_sr = 24000
else:
ref_tensor = torch.FloatTensor(ref_data).unsqueeze(0)
# Normalize volume
ref_tensor = ref_tensor / (torch.max(torch.abs(ref_tensor)) + 1e-6) * 0.95
else:
raise ValueError("Invalid reference audio format")
# Print debug information
print(f"Reference audio shape: {ref_tensor.shape}, sample rate: {ref_sr}")
if style_ref_text:
print(f"Style reference text: {style_ref_text}, language: {style_ref_text_language}")
# Save uploaded audio
torchaudio.save(temp_ref_path, ref_tensor, ref_sr)
if timbre_ref_wav is not None:
if isinstance(timbre_ref_wav, tuple) and len(timbre_ref_wav) == 2:
if isinstance(timbre_ref_wav[0], np.ndarray):
timbre_data, timbre_sr = timbre_ref_wav
else:
timbre_sr, timbre_data = timbre_ref_wav
# Ensure single channel
if len(timbre_data.shape) > 1 and timbre_data.shape[1] > 1:
timbre_data = np.mean(timbre_data, axis=1)
# Resample to 24kHz
if timbre_sr != 24000:
timbre_tensor = torch.FloatTensor(timbre_data).unsqueeze(0)
timbre_tensor = torchaudio.functional.resample(timbre_tensor, timbre_sr, 24000)
timbre_sr = 24000
else:
timbre_tensor = torch.FloatTensor(timbre_data).unsqueeze(0)
# Normalize volume
timbre_tensor = timbre_tensor / (torch.max(torch.abs(timbre_tensor)) + 1e-6) * 0.95
print(f"Timbre reference audio shape: {timbre_tensor.shape}, sample rate: {timbre_sr}")
torchaudio.save(temp_timbre_path, timbre_tensor, timbre_sr)
else:
raise ValueError("Invalid timbre reference audio format")
else:
temp_timbre_path = temp_ref_path
try:
# Get pipeline
pipeline = get_pipeline("tts")
# Inference
gen_audio = pipeline.inference_ar_and_fm(
src_wav_path=None,
src_text=text,
style_ref_wav_path=temp_ref_path,
timbre_ref_wav_path=temp_timbre_path,
style_ref_wav_text=style_ref_text,
src_text_language=src_language,
style_ref_wav_text_language=style_ref_text_language,
)
# Check if generated audio is numerical anomaly
if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any():
print("Warning: Generated audio contains NaN or Inf values")
gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95)
print(f"Generated audio shape: {gen_audio.shape}, max: {torch.max(gen_audio)}, min: {torch.min(gen_audio)}")
# Save generated audio
save_audio(gen_audio, output_path=output_path)
return output_path
except Exception as e:
print(f"Error during processing: {e}")
import traceback
traceback.print_exc()
raise e
# Create Gradio interface
with gr.Blocks(title="Vevo: Controllable Zero-Shot Voice Imitation with Self-Supervised Disentanglement") as demo:
gr.Markdown("# Vevo: Controllable Zero-Shot Voice Imitation with Self-Supervised Disentanglement")
# Add link tag line
with gr.Row(elem_id="links_row"):
gr.HTML("""
<div style="display: flex; justify-content: flex-start; gap: 8px; margin: 0 0; padding-left: 0px;">
<a href="https://arxiv.org/abs/2502.07243" target="_blank" style="text-decoration: none;">
<img alt="arXiv Paper" src="https://img.shields.io/badge/arXiv-Paper-red">
</a>
<a href="https://openreview.net/pdf?id=anQDiQZhDP" target="_blank" style="text-decoration: none;">
<img alt="ICLR Paper" src="https://img.shields.io/badge/ICLR-Paper-64b63a">
</a>
<a href="https://huggingface.co./amphion/Vevo" target="_blank" style="text-decoration: none;">
<img alt="HuggingFace Model" src="https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Model-yellow">
</a>
<a href="https://github.com/open-mmlab/Amphion/tree/main/models/vc/vevo" target="_blank" style="text-decoration: none;">
<img alt="GitHub Repo" src="https://img.shields.io/badge/GitHub-Repo-blue">
</a>
</div>
""")
with gr.Tab("Vevo-Timbre"):
gr.Markdown("### Vevo-Timbre: Maintain style but transfer timbre")
with gr.Row():
with gr.Column():
timbre_content = gr.Audio(label="Source Audio", type="numpy")
timbre_reference = gr.Audio(label="Timbre Reference", type="numpy")
timbre_button = gr.Button("Generate")
with gr.Column():
timbre_output = gr.Audio(label="Result")
timbre_button.click(vevo_timbre, inputs=[timbre_content, timbre_reference], outputs=timbre_output)
with gr.Tab("Vevo-Style"):
gr.Markdown("### Vevo-Style: Maintain timbre but transfer style (accent, emotion, etc.)")
with gr.Row():
with gr.Column():
style_content = gr.Audio(label="Source Audio", type="numpy")
style_reference = gr.Audio(label="Style Reference", type="numpy")
style_button = gr.Button("Generate")
with gr.Column():
style_output = gr.Audio(label="Result")
style_button.click(vevo_style, inputs=[style_content, style_reference], outputs=style_output)
with gr.Tab("Vevo-Voice"):
gr.Markdown("### Vevo-Voice: Transfers both style and timbre with separate references")
with gr.Row():
with gr.Column():
voice_content = gr.Audio(label="Source Audio", type="numpy")
voice_style_reference = gr.Audio(label="Style Reference", type="numpy")
voice_timbre_reference = gr.Audio(label="Timbre Reference", type="numpy")
voice_button = gr.Button("Generate")
with gr.Column():
voice_output = gr.Audio(label="Result")
voice_button.click(vevo_voice, inputs=[voice_content, voice_style_reference, voice_timbre_reference], outputs=voice_output)
with gr.Tab("Vevo-TTS"):
gr.Markdown("### Vevo-TTS: Text-to-speech with separate style and timbre references")
with gr.Row():
with gr.Column():
tts_text = gr.Textbox(label="Target Text", placeholder="Enter text to synthesize...", lines=3)
tts_src_language = gr.Dropdown(["en", "zh", "de", "fr", "ja", "ko"], label="Text Language", value="en")
tts_reference = gr.Audio(label="Style Reference", type="numpy")
tts_style_ref_text = gr.Textbox(label="Style Reference Text", placeholder="Enter style reference text...", lines=3)
tts_style_ref_text_language = gr.Dropdown(["en", "zh", "de", "fr", "ja", "ko"], label="Style Reference Text Language", value="en")
tts_timbre_reference = gr.Audio(label="Timbre Reference", type="numpy")
tts_button = gr.Button("Generate")
with gr.Column():
tts_output = gr.Audio(label="Result")
tts_button.click(
vevo_tts,
inputs=[tts_text, tts_reference, tts_timbre_reference, tts_style_ref_text, tts_src_language, tts_style_ref_text_language],
outputs=tts_output
)
gr.Markdown("""
## About VEVO
VEVO is a versatile voice synthesis and conversion model that offers four main functionalities:
1. **Vevo-Style**: Maintains timbre but transfers style (accent, emotion, etc.)
2. **Vevo-Timbre**: Maintains style but transfers timbre
3. **Vevo-Voice**: Transfers both style and timbre with separate references
4. **Vevo-TTS**: Text-to-speech with separate style and timbre references
For more information, visit the [Amphion project](https://github.com/open-mmlab/Amphion)
""")
# Launch application
demo.launch()