Update app.py
Browse files
app.py
CHANGED
@@ -7,10 +7,14 @@ from langchain.document_loaders import DataFrameLoader
|
|
7 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
from langchain.embeddings import HuggingFaceEmbeddings
|
9 |
from langchain.vectorstores import FAISS
|
10 |
-
from langchain.chains import
|
11 |
from langchain import HuggingFacePipeline
|
12 |
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
13 |
|
|
|
|
|
|
|
|
|
14 |
def preprocess_excel(file_path: str) -> pd.DataFrame:
|
15 |
df_raw = pd.read_excel(file_path, sheet_name='Data Base', header=None)
|
16 |
df = df_raw.iloc[4:].copy()
|
@@ -48,15 +52,20 @@ def create_qa_pipeline(vectorstore):
|
|
48 |
llm = HuggingFacePipeline(pipeline=gen_pipeline)
|
49 |
|
50 |
retriever = vectorstore.as_retriever()
|
51 |
-
qa =
|
52 |
return qa
|
53 |
|
|
|
54 |
st.set_page_config(page_title="Excel-Aware RAG Chatbot", layout="wide")
|
55 |
st.title("π Excel-Aware RAG Chatbot (Professional QA)")
|
56 |
|
57 |
with st.sidebar:
|
58 |
uploaded_file = st.file_uploader("Upload your Excel file (.xlsx or .xlsm with 'Data Base' sheet)", type=["xlsx", "xlsm"])
|
59 |
|
|
|
|
|
|
|
|
|
60 |
if uploaded_file is not None:
|
61 |
with st.spinner("Processing and indexing your Excel sheet..."):
|
62 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".xlsm") as tmp_file:
|
@@ -68,28 +77,36 @@ if uploaded_file is not None:
|
|
68 |
vectorstore = build_vectorstore_from_dataframe(cleaned_df)
|
69 |
qa = create_qa_pipeline(vectorstore)
|
70 |
st.success("β
File processed and chatbot ready! Ask your questions below.")
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
|
73 |
-
|
|
|
74 |
|
75 |
-
|
76 |
-
st.markdown("How can I help you with the inspection data?")
|
77 |
|
78 |
-
|
|
|
|
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
94 |
else:
|
95 |
-
st.info("Upload a file to get started.")
|
|
|
7 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
from langchain.embeddings import HuggingFaceEmbeddings
|
9 |
from langchain.vectorstores import FAISS
|
10 |
+
from langchain.chains import RetrievalQAWithSourcesChain
|
11 |
from langchain import HuggingFacePipeline
|
12 |
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
13 |
|
14 |
+
# Custom avatars
|
15 |
+
USER_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/9904d9a0d445ab0488cf7395cb863cce7621d897/USER_AVATAR.png"
|
16 |
+
BOT_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/991f4c6e4e1dc7a8e24876ca5aae5228bcdb4dba/Ataliba_Avatar.jpg"
|
17 |
+
|
18 |
def preprocess_excel(file_path: str) -> pd.DataFrame:
|
19 |
df_raw = pd.read_excel(file_path, sheet_name='Data Base', header=None)
|
20 |
df = df_raw.iloc[4:].copy()
|
|
|
52 |
llm = HuggingFacePipeline(pipeline=gen_pipeline)
|
53 |
|
54 |
retriever = vectorstore.as_retriever()
|
55 |
+
qa = RetrievalQAWithSourcesChain.from_llm(llm=llm, retriever=retriever)
|
56 |
return qa
|
57 |
|
58 |
+
# Streamlit app layout
|
59 |
st.set_page_config(page_title="Excel-Aware RAG Chatbot", layout="wide")
|
60 |
st.title("π Excel-Aware RAG Chatbot (Professional QA)")
|
61 |
|
62 |
with st.sidebar:
|
63 |
uploaded_file = st.file_uploader("Upload your Excel file (.xlsx or .xlsm with 'Data Base' sheet)", type=["xlsx", "xlsm"])
|
64 |
|
65 |
+
# Persistent chat history
|
66 |
+
if "chat_history" not in st.session_state:
|
67 |
+
st.session_state.chat_history = []
|
68 |
+
|
69 |
if uploaded_file is not None:
|
70 |
with st.spinner("Processing and indexing your Excel sheet..."):
|
71 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".xlsm") as tmp_file:
|
|
|
77 |
vectorstore = build_vectorstore_from_dataframe(cleaned_df)
|
78 |
qa = create_qa_pipeline(vectorstore)
|
79 |
st.success("β
File processed and chatbot ready! Ask your questions below.")
|
80 |
+
except Exception as e:
|
81 |
+
st.error(f"β Error processing file: {e}")
|
82 |
+
finally:
|
83 |
+
os.remove(tmp_path)
|
84 |
|
85 |
+
# Show previous messages
|
86 |
+
for message in st.session_state.chat_history:
|
87 |
+
st.chat_message(message["role"], avatar=USER_AVATAR if message["role"] == "user" else BOT_AVATAR).markdown(message["content"])
|
88 |
|
89 |
+
user_prompt = st.chat_input("Ask about inspections, delays, backlogs...")
|
|
|
90 |
|
91 |
+
if user_prompt:
|
92 |
+
st.session_state.chat_history.append({"role": "user", "content": user_prompt})
|
93 |
+
st.chat_message("user", avatar=USER_AVATAR).markdown(user_prompt)
|
94 |
|
95 |
+
with st.chat_message("assistant", avatar=BOT_AVATAR):
|
96 |
+
with st.spinner("Searching and generating..."):
|
97 |
+
try:
|
98 |
+
response = qa.run(user_prompt)
|
99 |
+
final_response = response['answer']
|
100 |
+
placeholder = st.empty()
|
101 |
+
streamed = ""
|
102 |
+
|
103 |
+
for word in final_response.split():
|
104 |
+
streamed += word + " "
|
105 |
+
placeholder.markdown(streamed + "β")
|
106 |
+
|
107 |
+
placeholder.markdown(f"**{final_response.strip()}**")
|
108 |
+
st.session_state.chat_history.append({"role": "assistant", "content": final_response})
|
109 |
+
except Exception as e:
|
110 |
+
st.error(f"β Error: {e}")
|
111 |
else:
|
112 |
+
st.info("Upload a file on the left to get started.")
|