File size: 77,260 Bytes
0b2295a 2ebba09 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a a895648 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a a895648 0b2295a f02caca a895648 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a a895648 f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca fd832fc 0b2295a fd832fc 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a fd832fc 0b2295a fd832fc 0b2295a f02caca fd832fc 0b2295a fd832fc 0b2295a f02caca 0b2295a f02caca 0b2295a f02caca 0b2295a fd832fc 0b2295a fd832fc 0b2295a f02caca 0b2295a f02caca a895648 f02caca a895648 f02caca a895648 f02caca a895648 f02caca 0b2295a f02caca 0b2295a f02caca fd832fc f02caca 0b2295a f02caca fd832fc 0b2295a f02caca 0b2295a f02caca 0b2295a fd832fc 0b2295a f02caca 0b2295a fd832fc 0b2295a fd832fc 0b2295a fd832fc 0b2295a fd832fc f02caca fd832fc 0b2295a fd832fc 0b2295a fd832fc 0b2295a f02caca 0b2295a fd832fc 0b2295a a895648 0b2295a fd832fc a895648 fd832fc 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a 2ebba09 0b2295a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 |
// Initialize the application when the DOM is fully loaded
document.addEventListener('DOMContentLoaded', () => {
console.log('Neural Network Playground Initialized');
// Initialize the canvas and tooltip
const canvas = document.getElementById('network-canvas');
const tooltip = document.createElement('div');
tooltip.className = 'canvas-tooltip';
tooltip.innerHTML = `
<div class="tooltip-header"></div>
<div class="tooltip-content"></div>
`;
document.body.appendChild(tooltip);
// Initialize drag and drop functionality
if (typeof initializeDragAndDrop === 'function') {
initializeDragAndDrop();
} else {
console.warn('initializeDragAndDrop function not found');
}
// Network configuration (from UI controls)
window.networkConfig = {
learningRate: 0.1,
activation: 'relu',
batchSize: 32,
epochs: 10,
optimizer: 'sgd'
};
// Make sure window.networkConfig is available globally for other scripts
if (!window.networkConfig) {
window.networkConfig = networkConfig;
}
// Initialize UI controls
setupUIControls();
// Force activation function graph update
setTimeout(() => {
const activationType = document.getElementById('activation')?.value || 'relu';
console.log('Ensuring activation function graph is rendered:', activationType);
updateActivationFunctionGraph(activationType);
}, 200);
// Layer editor modal
setupLayerEditor();
// Listen for network updates
document.addEventListener('networkUpdated', handleNetworkUpdate);
// Listen for layer editor events
document.addEventListener('openLayerEditor', handleOpenLayerEditor);
// Tab switching functionality
const tabButtons = document.querySelectorAll('.tab-button');
const tabContents = document.querySelectorAll('.tab-content');
tabButtons.forEach(button => {
button.addEventListener('click', () => {
// Get the tab data attribute
const tabId = button.getAttribute('data-tab');
// Remove active class from all buttons and contents
tabButtons.forEach(btn => btn.classList.remove('active'));
tabContents.forEach(content => content.classList.remove('active'));
// Add active class to the clicked button
button.classList.add('active');
// Add active class to the corresponding content
const tabContent = document.getElementById(`${tabId}-tab`);
if (tabContent) {
tabContent.classList.add('active');
// Dispatch a custom event to notify tab-specific scripts
document.dispatchEvent(new CustomEvent('tabSwitch', {
detail: { tab: tabId }
}));
}
});
});
// Modal functionality
const aboutLink = document.getElementById('about-link');
const guideLink = document.getElementById('guide-link');
const aboutModal = document.getElementById('about-modal');
const closeModalButtons = document.querySelectorAll('.close-modal');
if (aboutLink && aboutModal) {
aboutLink.addEventListener('click', (e) => {
e.preventDefault();
aboutModal.style.display = 'flex';
});
}
if (closeModalButtons) {
closeModalButtons.forEach(button => {
button.addEventListener('click', () => {
const modal = button.closest('.modal');
if (modal) {
modal.style.display = 'none';
}
});
});
}
// Close modals when clicking outside content
window.addEventListener('click', (e) => {
if (e.target.classList.contains('modal')) {
e.target.style.display = 'none';
}
});
// Setup UI controls and event listeners
function setupUIControls() {
console.log('Setting up UI controls...');
// Learning rate slider
const learningRateSlider = document.getElementById('learning-rate');
const learningRateValue = document.getElementById('learning-rate-value');
if (learningRateSlider && learningRateValue) {
// Set initial value - default to 0.1 if not set in networkConfig
window.networkConfig.learningRate = window.networkConfig.learningRate || 0.1;
learningRateSlider.value = window.networkConfig.learningRate;
learningRateValue.textContent = window.networkConfig.learningRate.toFixed(3);
learningRateSlider.addEventListener('input', (e) => {
window.networkConfig.learningRate = parseFloat(e.target.value);
learningRateValue.textContent = window.networkConfig.learningRate.toFixed(3);
console.log(`Learning rate updated: ${window.networkConfig.learningRate}`);
// Trigger network configuration update event
document.dispatchEvent(new CustomEvent('networkConfigUpdated', {
detail: {
type: 'learningRate',
value: window.networkConfig.learningRate
}
}));
});
console.log('Learning rate slider initialized with value:', window.networkConfig.learningRate);
} else {
console.warn('Learning rate controls not found in the DOM');
}
// Activation function dropdown
const activationSelect = document.getElementById('activation');
if (activationSelect) {
// Set initial value - default to 'relu' if not set in networkConfig
window.networkConfig.activation = window.networkConfig.activation || 'relu';
activationSelect.value = window.networkConfig.activation;
activationSelect.addEventListener('change', (e) => {
window.networkConfig.activation = e.target.value;
console.log(`Activation function updated: ${window.networkConfig.activation}`);
// Update activation function graph
updateActivationFunctionGraph(window.networkConfig.activation);
// Trigger network configuration update event
document.dispatchEvent(new CustomEvent('networkConfigUpdated', {
detail: {
type: 'activation',
value: window.networkConfig.activation
}
}));
});
console.log('Activation select initialized with value:', window.networkConfig.activation);
// Initialize activation function graph with current value
updateActivationFunctionGraph(window.networkConfig.activation);
} else {
console.warn('Activation select not found in the DOM');
}
// Optimizer dropdown
const optimizerSelect = document.getElementById('optimizer');
if (optimizerSelect) {
// Set initial value - default to 'sgd' if not set in networkConfig
window.networkConfig.optimizer = window.networkConfig.optimizer || 'sgd';
optimizerSelect.value = window.networkConfig.optimizer;
optimizerSelect.addEventListener('change', (e) => {
window.networkConfig.optimizer = e.target.value;
console.log(`Optimizer updated: ${window.networkConfig.optimizer}`);
// Trigger network configuration update event
document.dispatchEvent(new CustomEvent('networkConfigUpdated', {
detail: {
type: 'optimizer',
value: window.networkConfig.optimizer
}
}));
});
console.log('Optimizer select initialized with value:', window.networkConfig.optimizer);
} else {
console.warn('Optimizer select not found in the DOM');
}
// Button event listeners
const runButton = document.getElementById('run-network');
if (runButton) {
runButton.addEventListener('click', () => {
console.log('Run network button clicked');
runNetwork();
});
console.log('Run network button initialized');
} else {
console.warn('Run network button not found in the DOM');
}
const clearButton = document.getElementById('clear-canvas');
if (clearButton) {
clearButton.addEventListener('click', () => {
console.log('Clear canvas button clicked');
clearCanvas();
});
console.log('Clear canvas button initialized');
} else {
console.warn('Clear canvas button not found in the DOM');
}
// Modal handlers
setupModals();
console.log('UI controls setup complete');
}
// Setup modal handlers
function setupModals() {
const aboutModal = document.getElementById('about-modal');
const aboutLink = document.getElementById('about-link');
if (aboutLink && aboutModal) {
aboutLink.addEventListener('click', (e) => {
e.preventDefault();
openModal(aboutModal);
});
const closeButtons = aboutModal.querySelectorAll('.close-modal');
closeButtons.forEach(btn => {
btn.addEventListener('click', () => {
closeModal(aboutModal);
});
});
// Close modal when clicking outside
aboutModal.addEventListener('click', (e) => {
if (e.target === aboutModal) {
closeModal(aboutModal);
}
});
}
}
// Setup layer editor modal
function setupLayerEditor() {
const layerEditorModal = document.getElementById('layer-editor-modal');
if (layerEditorModal) {
const closeButtons = layerEditorModal.querySelectorAll('.close-modal');
closeButtons.forEach(btn => {
btn.addEventListener('click', () => {
closeModal(layerEditorModal);
});
});
// Close modal when clicking outside
layerEditorModal.addEventListener('click', (e) => {
if (e.target === layerEditorModal) {
closeModal(layerEditorModal);
}
});
// Save button
const saveButton = layerEditorModal.querySelector('.save-layer-btn');
if (saveButton) {
saveButton.addEventListener('click', () => {
// Get node reference from modal data attributes
const nodeRef = layerEditorModal.getAttribute('data-node-reference');
const nodeType = layerEditorModal.getAttribute('data-node-type');
const nodeId = layerEditorModal.getAttribute('data-node-id');
// Get actual DOM node using the ID
const node = document.querySelector(`.canvas-node[data-id="${nodeId}"]`);
if (node) {
saveLayerConfig(node, nodeType, nodeId);
}
// Close the modal after saving
closeModal(layerEditorModal);
});
}
}
}
// Open modal
function openModal(modal) {
if (modal) {
modal.style.display = 'flex';
}
}
// Close modal
function closeModal(modal) {
if (modal) {
modal.style.display = 'none';
}
}
// Handle network updates
function handleNetworkUpdate(e) {
const networkLayers = e.detail;
console.log('Network updated:', networkLayers);
// Update the properties panel
updatePropertiesPanel(networkLayers);
}
// Update properties panel with network information
function updatePropertiesPanel(networkLayers) {
const propertiesPanel = document.querySelector('.props-panel');
if (!propertiesPanel) return;
// Find the properties content section
const propsContent = propertiesPanel.querySelector('.props-content');
if (!propsContent) return;
// Basic network stats
const layerCount = networkLayers.layers.length;
const connectionCount = networkLayers.connections.length;
let layerTypeCounts = {};
networkLayers.layers.forEach(layer => {
layerTypeCounts[layer.type] = (layerTypeCounts[layer.type] || 0) + 1;
});
// Check network validity
const validationResult = window.neuralNetwork.validateNetwork(
networkLayers.layers,
networkLayers.connections
);
// Update network architecture section
let networkArchitectureHTML = `
<div class="props-section">
<div class="props-heading">
<i class="icon">🔍</i> Network Architecture
</div>
<div class="props-row">
<div class="props-key">Total Layers</div>
<div class="props-value">${layerCount}</div>
</div>
<div class="props-row">
<div class="props-key">Connections</div>
<div class="props-value">${connectionCount}</div>
</div>
`;
// Add layer type counts
Object.entries(layerTypeCounts).forEach(([type, count]) => {
networkArchitectureHTML += `
<div class="props-row">
<div class="props-key">${type.charAt(0).toUpperCase() + type.slice(1)} Layers</div>
<div class="props-value">${count}</div>
</div>
`;
});
// Add validation status
networkArchitectureHTML += `
<div class="props-row">
<div class="props-key">Validity</div>
<div class="props-value" style="color: ${validationResult.valid ? 'var(--secondary-color)' : 'var(--warning-color)'}">
${validationResult.valid ? 'Valid' : 'Invalid'}
</div>
</div>
`;
// If there are validation errors, show them
if (!validationResult.valid && validationResult.errors.length > 0) {
networkArchitectureHTML += `
<div class="props-row">
<div class="props-key">Errors</div>
<div class="props-value" style="color: var(--warning-color)">
${validationResult.errors.join('<br>')}
</div>
</div>
`;
}
networkArchitectureHTML += `</div>`;
// Calculate total parameters if we have layers
let totalParameters = 0;
let totalFlops = 0;
let totalMemory = 0;
if (layerCount > 0) {
// Calculate model stats
const modelStatsHTML = `
<div class="props-section">
<div class="props-heading">
<i class="icon">📊</i> Model Statistics
</div>
<div class="props-row">
<div class="props-key">Parameters</div>
<div class="props-value">${formatNumber(totalParameters)}</div>
</div>
<div class="props-row">
<div class="props-key">FLOPs</div>
<div class="props-value">${formatNumber(totalFlops)}</div>
</div>
<div class="props-row">
<div class="props-key">Memory</div>
<div class="props-value">${formatMemorySize(totalMemory)}</div>
</div>
</div>
`;
// Update the properties content
propsContent.innerHTML = networkArchitectureHTML + modelStatsHTML;
} else {
// Just show basic architecture info
propsContent.innerHTML = networkArchitectureHTML;
}
}
// Format number with K, M, B suffixes
function formatNumber(num) {
if (num === 0) return '0';
if (!num) return 'N/A';
if (num >= 1e9) return (num / 1e9).toFixed(2) + 'B';
if (num >= 1e6) return (num / 1e6).toFixed(2) + 'M';
if (num >= 1e3) return (num / 1e3).toFixed(2) + 'K';
return num.toString();
}
// Format memory size in bytes to KB, MB, GB
function formatMemorySize(bytes) {
if (bytes === 0) return '0 Bytes';
if (!bytes) return 'N/A';
const k = 1024;
const sizes = ['Bytes', 'KB', 'MB', 'GB'];
const i = Math.floor(Math.log(bytes) / Math.log(k));
return parseFloat((bytes / Math.pow(k, i)).toFixed(2)) + ' ' + sizes[i];
}
// Handle opening the layer editor
function handleOpenLayerEditor(e) {
const node = e.detail.node;
const nodeType = e.detail.type;
const layerId = e.detail.id;
// Store information in the modal for later use
const layerEditorModal = document.getElementById('layer-editor-modal');
layerEditorModal.setAttribute('data-node-reference', layerId);
layerEditorModal.setAttribute('data-node-type', nodeType);
layerEditorModal.setAttribute('data-node-id', layerId);
// Get current configuration
const layerConfig = node.layerConfig || window.neuralNetwork.createNodeConfig(nodeType);
// Update modal title
const modalTitle = document.querySelector('.layer-editor-modal .modal-title');
if (modalTitle) {
modalTitle.textContent = `Edit ${nodeType.charAt(0).toUpperCase() + nodeType.slice(1)} Layer`;
}
// Get layer form
const layerForm = document.querySelector('.layer-form');
if (!layerForm) return;
// Clear previous form fields
layerForm.innerHTML = '';
// Show modal
openModal(layerEditorModal);
// Create form fields based on layer type
switch (nodeType) {
case 'input':
// Input shape fields
layerForm.innerHTML += `
<div class="form-group">
<label>Input Dimensions:</label>
<div class="form-row">
<input type="number" id="input-height" min="1" value="${layerConfig.shape[0]}" placeholder="Height">
<input type="number" id="input-width" min="1" value="${layerConfig.shape[1]}" placeholder="Width">
<input type="number" id="input-channels" min="1" value="${layerConfig.shape[2]}" placeholder="Channels">
</div>
<small>Input shape: [${layerConfig.shape.join(' × ')}]</small>
</div>
<div class="form-group">
<label>Batch Size:</label>
<input type="number" id="batch-size" min="1" value="${layerConfig.batchSize}" placeholder="Batch Size">
</div>
`;
break;
case 'hidden':
// Units and activation function
layerForm.innerHTML += `
<div class="form-group">
<label>Units:</label>
<input type="number" id="hidden-units" min="1" value="${layerConfig.units}" placeholder="Number of units">
<small>Output shape: [${layerConfig.units}]</small>
</div>
<div class="form-group">
<label>Activation Function:</label>
<select id="hidden-activation">
<option value="relu" ${layerConfig.activation === 'relu' ? 'selected' : ''}>ReLU</option>
<option value="sigmoid" ${layerConfig.activation === 'sigmoid' ? 'selected' : ''}>Sigmoid</option>
<option value="tanh" ${layerConfig.activation === 'tanh' ? 'selected' : ''}>Tanh</option>
<option value="leaky_relu" ${layerConfig.activation === 'leaky_relu' ? 'selected' : ''}>Leaky ReLU</option>
</select>
</div>
<div class="form-group">
<label>Dropout Rate:</label>
<input type="range" id="dropout-rate" min="0" max="0.9" step="0.1" value="${layerConfig.dropoutRate}">
<span id="dropout-value">${layerConfig.dropoutRate}</span>
</div>
<div class="form-group">
<label>Use Bias:</label>
<input type="checkbox" id="use-bias" ${layerConfig.useBias ? 'checked' : ''}>
</div>
`;
// Add listener for dropout rate slider
setTimeout(() => {
const dropoutSlider = document.getElementById('dropout-rate');
const dropoutValue = document.getElementById('dropout-value');
if (dropoutSlider && dropoutValue) {
dropoutSlider.addEventListener('input', (e) => {
dropoutValue.textContent = e.target.value;
});
}
}, 100);
break;
case 'output':
// Output units and activation
layerForm.innerHTML += `
<div class="form-group">
<label>Units:</label>
<input type="number" id="output-units" min="1" value="${layerConfig.units}" placeholder="Number of output units">
<small>Output shape: [${layerConfig.units}]</small>
</div>
<div class="form-group">
<label>Activation Function:</label>
<select id="output-activation">
<option value="softmax" ${layerConfig.activation === 'softmax' ? 'selected' : ''}>Softmax (Classification)</option>
<option value="sigmoid" ${layerConfig.activation === 'sigmoid' ? 'selected' : ''}>Sigmoid (Binary Classification)</option>
<option value="linear" ${layerConfig.activation === 'linear' ? 'selected' : ''}>Linear (Regression)</option>
</select>
</div>
<div class="form-group">
<label>Use Bias:</label>
<input type="checkbox" id="output-use-bias" ${layerConfig.useBias ? 'checked' : ''}>
</div>
`;
break;
case 'conv':
// Convolutional layer parameters
// Get input and output shapes - may be calculated or null at first
const inputShape = layerConfig.inputShape || ['?', '?', '?'];
const outputShape = layerConfig.outputShape || ['?', '?', layerConfig.filters];
layerForm.innerHTML += `
<div class="form-group">
<label>Input Shape:</label>
<div class="form-row">
<input type="number" id="conv-input-h" min="1" value="${inputShape[0] === '?' ? 28 : inputShape[0]}" placeholder="Height">
<input type="number" id="conv-input-w" min="1" value="${inputShape[1] === '?' ? 28 : inputShape[1]}" placeholder="Width">
<input type="number" id="conv-input-c" min="1" value="${inputShape[2] === '?' ? 1 : inputShape[2]}" placeholder="Channels">
</div>
<small>Input dimensions: H × W × C</small>
</div>
<div class="form-group">
<label>Filters:</label>
<input type="number" id="conv-filters" min="1" value="${layerConfig.filters}" placeholder="Number of filters">
<small>Output channels</small>
</div>
<div class="form-group">
<label>Kernel Size:</label>
<div class="form-row">
<input type="number" id="kernel-size-h" min="1" max="7" value="${layerConfig.kernelSize[0]}" placeholder="Height">
<input type="number" id="kernel-size-w" min="1" max="7" value="${layerConfig.kernelSize[1]}" placeholder="Width">
</div>
<small>Filter dimensions: ${layerConfig.kernelSize.join(' × ')}</small>
</div>
<div class="form-group">
<label>Strides:</label>
<div class="form-row">
<input type="number" id="stride-h" min="1" max="4" value="${layerConfig.strides[0]}" placeholder="Height">
<input type="number" id="stride-w" min="1" max="4" value="${layerConfig.strides[1]}" placeholder="Width">
</div>
</div>
<div class="form-group">
<label>Padding:</label>
<select id="padding-type">
<option value="valid" ${layerConfig.padding === 'valid' ? 'selected' : ''}>Valid (No Padding)</option>
<option value="same" ${layerConfig.padding === 'same' ? 'selected' : ''}>Same (Preserve Dimensions)</option>
</select>
</div>
<div class="form-group">
<label>Activation Function:</label>
<select id="conv-activation">
<option value="relu" ${layerConfig.activation === 'relu' ? 'selected' : ''}>ReLU</option>
<option value="sigmoid" ${layerConfig.activation === 'sigmoid' ? 'selected' : ''}>Sigmoid</option>
<option value="tanh" ${layerConfig.activation === 'tanh' ? 'selected' : ''}>Tanh</option>
<option value="leaky_relu" ${layerConfig.activation === 'leaky_relu' ? 'selected' : ''}>Leaky ReLU</option>
</select>
</div>
<div class="form-group">
<label>Output Shape (calculated):</label>
<div class="output-shape-display" id="conv-output-shape">
[${outputShape.join(' × ')}]
</div>
<small>Output dimensions: H × W × Filters</small>
</div>
<div class="form-group">
<label>Parameters (calculated):</label>
<div class="parameters-display" id="conv-parameters">
Calculating...
</div>
</div>
`;
// Add event listeners to calculate output shape and parameters in real-time
setTimeout(() => {
const inputH = document.getElementById('conv-input-h');
const inputW = document.getElementById('conv-input-w');
const inputC = document.getElementById('conv-input-c');
const filters = document.getElementById('conv-filters');
const kernelH = document.getElementById('kernel-size-h');
const kernelW = document.getElementById('kernel-size-w');
const strideH = document.getElementById('stride-h');
const strideW = document.getElementById('stride-w');
const paddingType = document.getElementById('padding-type');
const outputShapeDisplay = document.getElementById('conv-output-shape');
const parametersDisplay = document.getElementById('conv-parameters');
const updateOutputShape = () => {
const h = parseInt(inputH.value);
const w = parseInt(inputW.value);
const c = parseInt(inputC.value);
const f = parseInt(filters.value);
const kh = parseInt(kernelH.value);
const kw = parseInt(kernelW.value);
const sh = parseInt(strideH.value);
const sw = parseInt(strideW.value);
const padding = paddingType.value;
// Calculate output dimensions
const pH = padding === 'same' ? Math.floor(kh / 2) : 0;
const pW = padding === 'same' ? Math.floor(kw / 2) : 0;
const outH = Math.floor((h - kh + 2 * pH) / sh) + 1;
const outW = Math.floor((w - kw + 2 * pW) / sw) + 1;
// Update output shape display
outputShapeDisplay.textContent = `[${outH} × ${outW} × ${f}]`;
// Calculate parameters
const params = kh * kw * c * f + f; // weights + bias
parametersDisplay.textContent = formatNumber(params);
// Store for saving
layerConfig.inputShape = [h, w, c];
layerConfig.outputShape = [outH, outW, f];
layerConfig.parameters = params;
};
// Attach event listeners to all inputs
[inputH, inputW, inputC, filters, kernelH, kernelW, strideH, strideW, paddingType].forEach(
input => input.addEventListener('input', updateOutputShape)
);
// Initialize values
updateOutputShape();
}, 100);
break;
case 'pool':
// Pooling layer parameters
// Get input and output shapes
const poolInputShape = layerConfig.inputShape || ['?', '?', '?'];
const poolOutputShape = layerConfig.outputShape || ['?', '?', '?'];
layerForm.innerHTML += `
<div class="form-group">
<label>Input Shape:</label>
<div class="form-row">
<input type="number" id="pool-input-h" min="1" value="${poolInputShape[0] === '?' ? 28 : poolInputShape[0]}" placeholder="Height">
<input type="number" id="pool-input-w" min="1" value="${poolInputShape[1] === '?' ? 28 : poolInputShape[1]}" placeholder="Width">
<input type="number" id="pool-input-c" min="1" value="${poolInputShape[2] === '?' ? 1 : poolInputShape[2]}" placeholder="Channels">
</div>
<small>Input dimensions: H × W × C</small>
</div>
<div class="form-group">
<label>Pool Size:</label>
<div class="form-row">
<input type="number" id="pool-size-h" min="1" max="4" value="${layerConfig.poolSize[0]}" placeholder="Height">
<input type="number" id="pool-size-w" min="1" max="4" value="${layerConfig.poolSize[1]}" placeholder="Width">
</div>
</div>
<div class="form-group">
<label>Strides:</label>
<div class="form-row">
<input type="number" id="pool-stride-h" min="1" max="4" value="${layerConfig.strides[0]}" placeholder="Height">
<input type="number" id="pool-stride-w" min="1" max="4" value="${layerConfig.strides[1]}" placeholder="Width">
</div>
</div>
<div class="form-group">
<label>Padding:</label>
<select id="pool-padding">
<option value="valid" ${layerConfig.padding === 'valid' ? 'selected' : ''}>Valid (No Padding)</option>
<option value="same" ${layerConfig.padding === 'same' ? 'selected' : ''}>Same (Preserve Dimensions)</option>
</select>
</div>
<div class="form-group">
<label>Pool Type:</label>
<select id="pool-type">
<option value="max" selected>Max Pooling</option>
<option value="avg">Average Pooling</option>
</select>
</div>
<div class="form-group">
<label>Output Shape (calculated):</label>
<div class="output-shape-display" id="pool-output-shape">
[${poolOutputShape.join(' × ')}]
</div>
<small>Output dimensions: H × W × C</small>
</div>
`;
// Add event listeners to calculate output shape in real-time
setTimeout(() => {
const inputH = document.getElementById('pool-input-h');
const inputW = document.getElementById('pool-input-w');
const inputC = document.getElementById('pool-input-c');
const poolH = document.getElementById('pool-size-h');
const poolW = document.getElementById('pool-size-w');
const strideH = document.getElementById('pool-stride-h');
const strideW = document.getElementById('pool-stride-w');
const paddingType = document.getElementById('pool-padding');
const outputShapeDisplay = document.getElementById('pool-output-shape');
const updateOutputShape = () => {
const h = parseInt(inputH.value);
const w = parseInt(inputW.value);
const c = parseInt(inputC.value);
const ph = parseInt(poolH.value);
const pw = parseInt(poolW.value);
const sh = parseInt(strideH.value);
const sw = parseInt(strideW.value);
const padding = paddingType.value;
// Calculate output dimensions
const padH = padding === 'same' ? Math.floor(ph / 2) : 0;
const padW = padding === 'same' ? Math.floor(pw / 2) : 0;
const outH = Math.floor((h - ph + 2 * padH) / sh) + 1;
const outW = Math.floor((w - pw + 2 * padW) / sw) + 1;
// Update output shape display
outputShapeDisplay.textContent = `[${outH} × ${outW} × ${c}]`;
// Store for saving
layerConfig.inputShape = [h, w, c];
layerConfig.outputShape = [outH, outW, c];
layerConfig.parameters = 0; // Pooling has no parameters
};
// Attach event listeners to all inputs
[inputH, inputW, inputC, poolH, poolW, strideH, strideW, paddingType].forEach(
input => input.addEventListener('input', updateOutputShape)
);
// Initialize values
updateOutputShape();
}, 100);
break;
case 'linear':
// Linear regression layer parameters
layerForm.innerHTML += `
<div class="form-group">
<label>Input Features:</label>
<input type="number" id="input-features" min="1" value="${layerConfig.inputFeatures}" placeholder="Number of input features">
<small>Input shape: [${layerConfig.inputFeatures}]</small>
</div>
<div class="form-group">
<label>Output Features:</label>
<input type="number" id="output-features" min="1" value="${layerConfig.outputFeatures}" placeholder="Number of output features">
<small>Output shape: [${layerConfig.outputFeatures}]</small>
</div>
<div class="form-group">
<label>Use Bias:</label>
<input type="checkbox" id="linear-use-bias" ${layerConfig.useBias ? 'checked' : ''}>
</div>
<div class="form-group">
<label>Learning Rate:</label>
<input type="range" id="learning-rate-slider" min="0.001" max="0.1" step="0.001" value="${layerConfig.learningRate}">
<span id="learning-rate-value">${layerConfig.learningRate}</span>
</div>
<div class="form-group">
<label>Loss Function:</label>
<select id="loss-function">
<option value="mse" ${layerConfig.lossFunction === 'mse' ? 'selected' : ''}>Mean Squared Error</option>
<option value="mae" ${layerConfig.lossFunction === 'mae' ? 'selected' : ''}>Mean Absolute Error</option>
<option value="huber" ${layerConfig.lossFunction === 'huber' ? 'selected' : ''}>Huber Loss</option>
</select>
</div>
<div class="form-group">
<label>Optimizer:</label>
<select id="optimizer">
<option value="sgd" ${layerConfig.optimizer === 'sgd' ? 'selected' : ''}>Stochastic Gradient Descent</option>
<option value="adam" ${layerConfig.optimizer === 'adam' ? 'selected' : ''}>Adam</option>
<option value="rmsprop" ${layerConfig.optimizer === 'rmsprop' ? 'selected' : ''}>RMSprop</option>
</select>
</div>
`;
// Add listener for learning rate slider
setTimeout(() => {
const learningRateSlider = document.getElementById('learning-rate-slider');
const learningRateValue = document.getElementById('learning-rate-value');
if (learningRateSlider && learningRateValue) {
learningRateSlider.addEventListener('input', (e) => {
learningRateValue.textContent = parseFloat(e.target.value).toFixed(3);
});
}
}, 100);
break;
default:
layerForm.innerHTML = '<p>No editable properties for this layer type.</p>';
}
// Add a preview of calculated parameters if available
if (nodeType !== 'input') {
const parameterCount = window.neuralNetwork.calculateParameters(nodeType, layerConfig);
if (parameterCount) {
layerForm.innerHTML += `
<div class="form-group">
<label>Parameter Summary:</label>
<div class="parameters-summary">
<p>Total parameters: <strong>${formatNumber(parameterCount)}</strong></p>
<p>Memory usage (32-bit): ~${formatMemorySize(parameterCount * 4)}</p>
</div>
</div>
`;
}
}
// Open the modal
const modal = document.getElementById('layer-editor-modal');
if (modal) {
openModal(modal);
// Add event listeners for the buttons in the modal footer
const saveButton = modal.querySelector('.modal-footer .save-layer-btn');
if (saveButton) {
// Remove any existing event listeners
const newSaveButton = saveButton.cloneNode(true);
saveButton.parentNode.replaceChild(newSaveButton, saveButton);
// Add new event listener
newSaveButton.addEventListener('click', () => {
saveLayerConfig(node, nodeType, layerId);
closeModal(modal);
});
}
const cancelButtons = modal.querySelectorAll('.modal-footer .close-modal');
cancelButtons.forEach(cancelButton => {
// Remove any existing event listeners
const newCancelButton = cancelButton.cloneNode(true);
cancelButton.parentNode.replaceChild(newCancelButton, cancelButton);
// Add new event listener
newCancelButton.addEventListener('click', () => {
closeModal(modal);
});
});
}
}
// Save layer configuration
function saveLayerConfig(node, nodeType, layerId) {
// Get form values
const form = document.querySelector('.layer-form');
if (!form) return;
const values = {};
const inputs = form.querySelectorAll('input, select');
inputs.forEach(input => {
if (input.type === 'checkbox') {
values[input.id] = input.checked;
} else {
values[input.id] = input.value;
}
});
// Update node configuration
node.layerConfig = node.layerConfig || {};
const layerConfig = node.layerConfig;
switch (nodeType) {
case 'input':
layerConfig.shape = [
parseInt(values['input-height']) || 28,
parseInt(values['input-width']) || 28,
parseInt(values['input-channels']) || 1
];
layerConfig.batchSize = parseInt(values['batch-size']) || 32;
layerConfig.outputShape = layerConfig.shape;
layerConfig.parameters = 0;
break;
case 'hidden':
layerConfig.units = parseInt(values['hidden-units']) || 128;
layerConfig.activation = values['hidden-activation'] || 'relu';
layerConfig.dropoutRate = parseFloat(values['dropout-rate']) || 0.2;
layerConfig.useBias = values['use-bias'] === true;
layerConfig.outputShape = [layerConfig.units];
// Calculate parameters if input shape is available
if (layerConfig.inputShape) {
const inputUnits = Array.isArray(layerConfig.inputShape) ?
layerConfig.inputShape.reduce((a, b) => a * b, 1) : layerConfig.inputShape;
layerConfig.parameters = (inputUnits * layerConfig.units) + (layerConfig.useBias ? layerConfig.units : 0);
}
break;
case 'output':
layerConfig.units = parseInt(values['output-units']) || 10;
layerConfig.activation = values['output-activation'] || 'softmax';
layerConfig.useBias = values['output-use-bias'] === true;
layerConfig.outputShape = [layerConfig.units];
// Calculate parameters if input shape is available
if (layerConfig.inputShape) {
const inputUnits = Array.isArray(layerConfig.inputShape) ?
layerConfig.inputShape.reduce((a, b) => a * b, 1) : layerConfig.inputShape;
layerConfig.parameters = (inputUnits * layerConfig.units) + (layerConfig.useBias ? layerConfig.units : 0);
}
break;
case 'conv':
// Process input shape if available in form
if (values['conv-input-h'] && values['conv-input-w'] && values['conv-input-c']) {
layerConfig.inputShape = [
parseInt(values['conv-input-h']) || 28,
parseInt(values['conv-input-w']) || 28,
parseInt(values['conv-input-c']) || 1
];
}
// Process configuration
layerConfig.filters = parseInt(values['conv-filters']) || 32;
layerConfig.kernelSize = [
parseInt(values['kernel-size-h']) || 3,
parseInt(values['kernel-size-w']) || 3
];
layerConfig.strides = [
parseInt(values['stride-h']) || 1,
parseInt(values['stride-w']) || 1
];
layerConfig.padding = values['padding-type'] || 'valid';
layerConfig.activation = values['conv-activation'] || 'relu';
layerConfig.useBias = true; // Default to true for CNN
// Calculate output shape if input shape is available
if (layerConfig.inputShape) {
const padding = layerConfig.padding === 'same' ?
Math.floor(layerConfig.kernelSize[0] / 2) : 0;
const outH = Math.floor(
(layerConfig.inputShape[0] - layerConfig.kernelSize[0] + 2 * padding) /
layerConfig.strides[0]
) + 1;
const outW = Math.floor(
(layerConfig.inputShape[1] - layerConfig.kernelSize[1] + 2 * padding) /
layerConfig.strides[1]
) + 1;
layerConfig.outputShape = [outH, outW, layerConfig.filters];
// Calculate parameters
const kernelParams = layerConfig.kernelSize[0] * layerConfig.kernelSize[1] *
layerConfig.inputShape[2] * layerConfig.filters;
const biasParams = layerConfig.filters;
layerConfig.parameters = kernelParams + biasParams;
}
break;
case 'pool':
// Process input shape if available in form
if (values['pool-input-h'] && values['pool-input-w'] && values['pool-input-c']) {
layerConfig.inputShape = [
parseInt(values['pool-input-h']) || 28,
parseInt(values['pool-input-w']) || 28,
parseInt(values['pool-input-c']) || 1
];
}
// Process configuration
layerConfig.poolSize = [
parseInt(values['pool-size-h']) || 2,
parseInt(values['pool-size-w']) || 2
];
layerConfig.strides = [
parseInt(values['pool-stride-h']) || 2,
parseInt(values['pool-stride-w']) || 2
];
layerConfig.padding = values['pool-padding'] || 'valid';
layerConfig.poolType = values['pool-type'] || 'max';
// Calculate output shape if input shape is available
if (layerConfig.inputShape) {
const poolPadding = layerConfig.padding === 'same' ?
Math.floor(layerConfig.poolSize[0] / 2) : 0;
const poolOutH = Math.floor(
(layerConfig.inputShape[0] - layerConfig.poolSize[0] + 2 * poolPadding) /
layerConfig.strides[0]
) + 1;
const poolOutW = Math.floor(
(layerConfig.inputShape[1] - layerConfig.poolSize[1] + 2 * poolPadding) /
layerConfig.strides[1]
) + 1;
layerConfig.outputShape = [poolOutH, poolOutW, layerConfig.inputShape[2]];
}
// Pooling has no parameters
layerConfig.parameters = 0;
break;
case 'linear':
layerConfig.inputFeatures = parseInt(values['input-features']) || 1;
layerConfig.outputFeatures = parseInt(values['output-features']) || 1;
layerConfig.useBias = values['linear-use-bias'] === true;
layerConfig.learningRate = parseFloat(values['learning-rate-slider']) || 0.01;
layerConfig.activation = values['linear-activation'] || 'linear';
layerConfig.optimizer = values['optimizer'] || 'sgd';
layerConfig.lossFunction = values['loss-function'] || 'mse';
layerConfig.inputShape = [layerConfig.inputFeatures];
layerConfig.outputShape = [layerConfig.outputFeatures];
// Calculate parameters
layerConfig.parameters = layerConfig.inputFeatures * layerConfig.outputFeatures;
if (layerConfig.useBias) {
layerConfig.parameters += layerConfig.outputFeatures;
}
break;
}
// Update node title
const nodeTitle = node.querySelector('.node-title');
if (nodeTitle) {
nodeTitle.textContent = nodeType.charAt(0).toUpperCase() + nodeType.slice(1);
}
// Update node data attribute
node.setAttribute('data-name', nodeType.charAt(0).toUpperCase() + nodeType.slice(1));
// Update dimensions and parameter display based on layer type
let dimensions = '';
switch (nodeType) {
case 'input':
dimensions = layerConfig.shape.join(' × ');
break;
case 'hidden':
case 'output':
dimensions = layerConfig.units.toString();
break;
case 'conv':
if (layerConfig.inputShape && layerConfig.outputShape) {
// Show input -> output shape transformation
dimensions = `${layerConfig.inputShape[0]}×${layerConfig.inputShape[1]}×${layerConfig.inputShape[2]} → ${layerConfig.outputShape[0]}×${layerConfig.outputShape[1]}×${layerConfig.outputShape[2]}`;
} else {
dimensions = `? → ${layerConfig.filters} filters`;
}
break;
case 'pool':
if (layerConfig.inputShape && layerConfig.outputShape) {
// Show input -> output shape transformation
dimensions = `${layerConfig.inputShape[0]}×${layerConfig.inputShape[1]}×${layerConfig.inputShape[2]} → ${layerConfig.outputShape[0]}×${layerConfig.outputShape[1]}×${layerConfig.outputShape[2]}`;
} else {
dimensions = `? → ?`;
}
break;
case 'linear':
dimensions = `${layerConfig.inputFeatures} → ${layerConfig.outputFeatures}`;
break;
}
// Update node dimensions display
const nodeDimensions = node.querySelector('.node-dimensions');
if (nodeDimensions) {
nodeDimensions.textContent = dimensions;
}
// Update parameters display if available
const nodeParameters = node.querySelector('.node-parameters');
if (nodeParameters && layerConfig.parameters !== undefined) {
nodeParameters.textContent = `Params: ${formatNumber(layerConfig.parameters)}`;
} else if (nodeParameters) {
nodeParameters.textContent = 'Params: ?';
}
// Update node data attribute
node.setAttribute('data-dimensions', dimensions);
// Update network layers in drag-drop module
const networkLayers = window.dragDrop.getNetworkArchitecture();
const layerIndex = networkLayers.layers.findIndex(layer => layer.id === layerId);
if (layerIndex !== -1) {
networkLayers.layers[layerIndex].name = nodeType.charAt(0).toUpperCase() + nodeType.slice(1);
networkLayers.layers[layerIndex].dimensions = dimensions;
networkLayers.layers[layerIndex].config = layerConfig;
// Add parameter count to the layer
networkLayers.layers[layerIndex].parameters = layerConfig.parameters;
}
// Find all connections from this node and update target nodes
const connections = document.querySelectorAll(`.connection[data-source="${layerId}"]`);
connections.forEach(connection => {
const targetId = connection.getAttribute('data-target');
const targetNode = document.querySelector(`.canvas-node[data-id="${targetId}"]`);
if (targetNode && targetNode.layerConfig) {
// Update target node's input shape based on this node's output shape
if (layerConfig.outputShape) {
targetNode.layerConfig.inputShape = layerConfig.outputShape;
// Recalculate parameters
const targetType = targetNode.getAttribute('data-type');
const newParams = window.neuralNetwork.calculateParameters(
targetType,
targetNode.layerConfig,
layerConfig
);
if (newParams) {
targetNode.layerConfig.parameters = newParams;
// Update parameter display
const paramsDisplay = targetNode.querySelector('.node-parameters');
if (paramsDisplay) {
paramsDisplay.textContent = `Params: ${formatNumber(newParams)}`;
}
// Update input shape display
const inputShapeDisplay = targetNode.querySelector('.input-shape');
if (inputShapeDisplay) {
inputShapeDisplay.textContent = `[${targetNode.layerConfig.inputShape.join(' × ')}]`;
}
}
}
}
});
// Trigger network updated event
const event = new CustomEvent('networkUpdated', { detail: networkLayers });
document.dispatchEvent(event);
// Update all connections to reflect the new shapes and positions
window.dragDrop.updateConnections();
}
// Helper function to update connections between nodes when shapes change
function updateNodeConnections(sourceNode, sourceId) {
// Find all connections from this source node
const connections = document.querySelectorAll(`.connection[data-source="${sourceId}"]`);
connections.forEach(connection => {
const targetId = connection.getAttribute('data-target');
const targetNode = document.querySelector(`.canvas-node[data-id="${targetId}"]`);
if (targetNode && sourceNode.layerConfig && sourceNode.layerConfig.outputShape) {
// Update target node with source node's output shape as its input shape
if (!targetNode.layerConfig) {
targetNode.layerConfig = {};
}
targetNode.layerConfig.inputShape = sourceNode.layerConfig.outputShape;
// Update parameter calculation
window.neuralNetwork.calculateParameters(
targetNode.getAttribute('data-type'),
targetNode.layerConfig,
sourceNode.layerConfig
);
// Update display
updateNodeDisplay(targetNode);
// Recursively update downstream nodes
updateNodeConnections(targetNode, targetId);
}
});
}
// Helper function to update a node's display
function updateNodeDisplay(node) {
if (!node || !node.layerConfig) return;
const nodeType = node.getAttribute('data-type');
const layerConfig = node.layerConfig;
// Create dimensions string
let dimensions = '';
switch (nodeType) {
case 'conv':
case 'pool':
if (layerConfig.inputShape && layerConfig.outputShape) {
dimensions = `${layerConfig.inputShape[0]}×${layerConfig.inputShape[1]}×${layerConfig.inputShape[2]} → ${layerConfig.outputShape[0]}×${layerConfig.outputShape[1]}×${layerConfig.outputShape[2]}`;
}
break;
case 'hidden':
case 'output':
dimensions = layerConfig.units.toString();
break;
case 'linear':
dimensions = `${layerConfig.inputFeatures} → ${layerConfig.outputFeatures}`;
break;
}
// Update dimensions display
if (dimensions) {
const nodeDimensions = node.querySelector('.node-dimensions');
if (nodeDimensions) {
nodeDimensions.textContent = dimensions;
node.setAttribute('data-dimensions', dimensions);
}
}
// Update parameters display
if (layerConfig.parameters !== undefined) {
const nodeParameters = node.querySelector('.node-parameters');
if (nodeParameters) {
nodeParameters.textContent = `Params: ${formatNumber(layerConfig.parameters)}`;
}
}
}
// Handle sample selection
function handleSampleSelection(sampleId) {
// Set active sample
document.querySelectorAll('.sample-item').forEach(item => {
item.classList.remove('active');
if (item.getAttribute('data-sample') === sampleId) {
item.classList.add('active');
}
});
// Get sample data
const sampleData = window.neuralNetwork.sampleData[sampleId];
if (!sampleData) return;
console.log(`Selected sample: ${sampleData.name}`);
// Update properties panel to show sample info
const propertiesPanel = document.querySelector('.props-panel');
if (!propertiesPanel) return;
const propsContent = propertiesPanel.querySelector('.props-content');
if (!propsContent) return;
propsContent.innerHTML = `
<div class="props-section">
<div class="props-heading">
<i class="icon">📊</i> ${sampleData.name}
</div>
<div class="props-row">
<div class="props-key">Input Shape</div>
<div class="props-value">${sampleData.inputShape.join(' × ')}</div>
</div>
<div class="props-row">
<div class="props-key">Classes</div>
<div class="props-value">${sampleData.numClasses}</div>
</div>
<div class="props-row">
<div class="props-key">Training Samples</div>
<div class="props-value">${sampleData.trainSamples.toLocaleString()}</div>
</div>
<div class="props-row">
<div class="props-key">Test Samples</div>
<div class="props-value">${sampleData.testSamples.toLocaleString()}</div>
</div>
<div class="props-row">
<div class="props-key">Description</div>
<div class="props-value">${sampleData.description}</div>
</div>
</div>
<div class="props-section">
<p class="hint-text">Click "Run Network" to train on this dataset</p>
</div>
`;
}
// Function to run the neural network simulation
function runNetwork() {
console.log('Running neural network simulation with config:', window.networkConfig);
// Get the current network architecture if possible
let networkLayers = { layers: [], connections: [] };
if (window.dragDrop && typeof window.dragDrop.getNetworkArchitecture === 'function') {
try {
networkLayers = window.dragDrop.getNetworkArchitecture();
console.log('Network architecture retrieved:', networkLayers);
} catch (error) {
console.error('Error getting network architecture:', error);
}
} else {
console.warn('dragDrop.getNetworkArchitecture is not available, using fallback');
// Fallback: Get nodes and connections manually
const canvas = document.getElementById('network-canvas');
if (canvas) {
const nodes = canvas.querySelectorAll('.canvas-node');
const connections = canvas.querySelectorAll('.connection');
if (nodes.length === 0) {
alert('Please add some nodes to the network first!');
return;
}
// Just animate what's visible on the canvas
console.log(`Found ${nodes.length} nodes and ${connections.length} connections on canvas`);
}
}
// Check if we have a valid network
if (networkLayers.layers.length === 0) {
// Check for nodes on the canvas directly
const canvas = document.getElementById('network-canvas');
const nodes = canvas ? canvas.querySelectorAll('.canvas-node') : [];
if (nodes.length === 0) {
alert('Please add some nodes to the network first!');
return;
}
}
// Validate the network if possible
let validationResult = { valid: true, errors: [] };
if (window.neuralNetwork && typeof window.neuralNetwork.validateNetwork === 'function') {
try {
validationResult = window.neuralNetwork.validateNetwork(
networkLayers.layers,
networkLayers.connections
);
if (!validationResult.valid) {
alert('Network is not valid: ' + validationResult.errors.join('\n'));
return;
}
} catch (error) {
console.error('Error validating network:', error);
// Continue anyway since we'll just animate
}
} else {
console.warn('neuralNetwork.validateNetwork is not available, skipping validation');
}
// Add animation class to all nodes
const nodes = document.querySelectorAll('.canvas-node');
nodes.forEach(node => {
node.classList.add('highlight-pulse');
// Add a delay to remove the animation class
setTimeout(() => {
node.classList.remove('highlight-pulse');
}, 1500);
});
// Animate connections to show data flow
document.querySelectorAll('.connection').forEach((conn, index) => {
// Apply sequential animation to show data flow direction
setTimeout(() => {
conn.style.transition = 'box-shadow 0.3s ease-in-out';
conn.style.boxShadow = '0 0 15px rgba(52, 152, 219, 0.8)';
// Add a delay to remove the highlight
setTimeout(() => {
conn.style.boxShadow = '0 0 8px rgba(52, 152, 219, 0.5)';
}, 600);
}, index * 150); // Stagger the animations
});
// Update training progress visualization
simulateTrainingProgress();
console.log('Network animation complete');
}
// Simulate training progress for visualization
function simulateTrainingProgress() {
const progressBar = document.querySelector('.progress-bar');
const lossValue = document.getElementById('loss-value');
const accuracyValue = document.getElementById('accuracy-value');
if (progressBar && lossValue && accuracyValue) {
// Reset progress bar
progressBar.style.width = '0%';
lossValue.textContent = '1.0000';
accuracyValue.textContent = '0%';
// Simulate training progress with animation
let progress = 0;
let loss = 1.0;
let accuracy = 0.0;
const interval = setInterval(() => {
progress += 2;
loss = Math.max(0.05, loss * 0.95);
accuracy = Math.min(99, accuracy + 2);
progressBar.style.width = `${progress}%`;
lossValue.textContent = loss.toFixed(4);
accuracyValue.textContent = `${accuracy.toFixed(1)}%`;
if (progress >= 100) {
clearInterval(interval);
// Final values
lossValue.textContent = '0.0342';
accuracyValue.textContent = '98.7%';
console.log('Training simulation complete');
}
}, 50);
}
}
// Function to clear all nodes from the canvas
function clearCanvas() {
// Show confirmation dialog
if (confirm('Are you sure you want to clear the canvas? This will remove all nodes and connections.')) {
// Use the drag-drop module's clear function if available
if (window.dragDrop && typeof window.dragDrop.clearAllNodes === 'function') {
window.dragDrop.clearAllNodes();
} else {
// Fallback: manually remove all canvas nodes
const canvas = document.getElementById('network-canvas');
const nodes = canvas.querySelectorAll('.canvas-node');
const connections = canvas.querySelectorAll('.connection');
// Remove all connections
connections.forEach(conn => conn.remove());
// Remove all nodes
nodes.forEach(node => node.remove());
// Add canvas hint
if (canvas.querySelector('.canvas-hint') === null) {
const hint = document.createElement('div');
hint.className = 'canvas-hint';
hint.innerHTML = `
<strong>Build Your Neural Network</strong>
Drag components from the left panel and drop them here.
<br>Connect them by dragging from output (right) to input (left) ports.
`;
canvas.appendChild(hint);
}
console.log('Canvas cleared manually');
}
// Reset progress indicators
const progressBar = document.querySelector('.progress-bar');
const lossValue = document.getElementById('loss-value');
const accuracyValue = document.getElementById('accuracy-value');
if (progressBar) progressBar.style.width = '0%';
if (lossValue) lossValue.textContent = '-';
if (accuracyValue) accuracyValue.textContent = '-';
console.log('Canvas cleared and progress indicators reset');
}
}
// Update activation function graph
function updateActivationFunctionGraph(activationType) {
const activationGraph = document.querySelector('.activation-graph');
if (!activationGraph) return;
// Get SVG element
const svg = activationGraph.querySelector('.activation-curve');
if (!svg) return;
// Clear previous paths
while (svg.firstChild) {
svg.removeChild(svg.firstChild);
}
// Create path for the activation function
const path = document.createElementNS('http://www.w3.org/2000/svg', 'path');
path.setAttribute('stroke', '#3498db');
path.setAttribute('stroke-width', '2');
path.setAttribute('fill', 'none');
// Draw axes
const xAxis = document.createElementNS('http://www.w3.org/2000/svg', 'line');
xAxis.setAttribute('x1', '0');
xAxis.setAttribute('y1', '50');
xAxis.setAttribute('x2', '100');
xAxis.setAttribute('y2', '50');
xAxis.setAttribute('stroke', '#ccc');
xAxis.setAttribute('stroke-width', '1');
const yAxis = document.createElementNS('http://www.w3.org/2000/svg', 'line');
yAxis.setAttribute('x1', '50');
yAxis.setAttribute('y1', '0');
yAxis.setAttribute('x2', '50');
yAxis.setAttribute('y2', '100');
yAxis.setAttribute('stroke', '#ccc');
yAxis.setAttribute('stroke-width', '1');
// Add axes to SVG
svg.appendChild(xAxis);
svg.appendChild(yAxis);
// Calculate path based on activation type
let pathData = '';
switch(activationType) {
case 'relu':
pathData = 'M0,50 L50,50 L100,0';
break;
case 'sigmoid':
pathData = generateSigmoidPath();
break;
case 'tanh':
pathData = generateTanhPath();
break;
default: // Linear
pathData = 'M0,80 L100,20';
}
path.setAttribute('d', pathData);
svg.appendChild(path);
// Add label
const label = document.createElementNS('http://www.w3.org/2000/svg', 'text');
label.setAttribute('x', '50');
label.setAttribute('y', '95');
label.setAttribute('text-anchor', 'middle');
label.setAttribute('font-size', '10');
label.setAttribute('fill', '#333');
label.textContent = activationType.charAt(0).toUpperCase() + activationType.slice(1);
svg.appendChild(label);
console.log(`Activation function graph updated: ${activationType}`);
}
// Generate path data for sigmoid function
function generateSigmoidPath() {
let pathData = '';
for (let x = 0; x <= 100; x += 2) {
const normalizedX = (x / 100 - 0.5) * 10;
const sigmoidY = 1 / (1 + Math.exp(-normalizedX));
const y = 100 - sigmoidY * 100;
if (x === 0) pathData += `M${x},${y}`;
else pathData += ` L${x},${y}`;
}
return pathData;
}
// Generate path data for tanh function
function generateTanhPath() {
let pathData = '';
for (let x = 0; x <= 100; x += 2) {
const normalizedX = (x / 100 - 0.5) * 6;
const tanhY = Math.tanh(normalizedX);
const y = 50 - tanhY * 50;
if (x === 0) pathData += `M${x},${y}`;
else pathData += ` L${x},${y}`;
}
return pathData;
}
// Setup node hover effects for tooltips
canvas.addEventListener('mouseover', (e) => {
const node = e.target.closest('.canvas-node');
if (node) {
const rect = node.getBoundingClientRect();
const nodeType = node.getAttribute('data-type');
const nodeName = node.getAttribute('data-name');
const dimensions = node.getAttribute('data-dimensions');
// Show tooltip
tooltip.style.display = 'block';
tooltip.style.left = `${rect.right + 10}px`;
tooltip.style.top = `${rect.top}px`;
const tooltipHeader = tooltip.querySelector('.tooltip-header');
const tooltipContent = tooltip.querySelector('.tooltip-content');
if (tooltipHeader && tooltipContent) {
tooltipHeader.textContent = nodeName;
let content = '';
content += `<div class="tooltip-row">
<div class="tooltip-label">Type:</div>
<div class="tooltip-value">${nodeType.charAt(0).toUpperCase() + nodeType.slice(1)}</div>
</div>`;
content += `<div class="tooltip-row">
<div class="tooltip-label">Dimensions:</div>
<div class="tooltip-value">${dimensions}</div>
</div>`;
// Get config template
const configTemplate = window.neuralNetwork.nodeConfigTemplates[nodeType];
if (configTemplate) {
if (configTemplate.activation) {
content += `<div class="tooltip-row">
<div class="tooltip-label">Activation:</div>
<div class="tooltip-value">${configTemplate.activation}</div>
</div>`;
}
if (configTemplate.description) {
content += `<div class="tooltip-row">
<div class="tooltip-label">Description:</div>
<div class="tooltip-value">${configTemplate.description}</div>
</div>`;
}
}
tooltipContent.innerHTML = content;
}
}
});
canvas.addEventListener('mouseout', (e) => {
const node = e.target.closest('.canvas-node');
if (node) {
tooltip.style.display = 'none';
}
});
// Make sure tooltip follows cursor for nodes that are being dragged
canvas.addEventListener('mousemove', (e) => {
const node = e.target.closest('.canvas-node');
if (node && node.classList.contains('dragging')) {
const rect = node.getBoundingClientRect();
tooltip.style.left = `${rect.right + 10}px`;
tooltip.style.top = `${rect.top}px`;
}
});
}); |