File size: 13,221 Bytes
4b91514 2c59c95 4b91514 2c59c95 4b91514 7bf4f09 4b91514 7bf4f09 4b91514 7bf4f09 4b91514 7bf4f09 4b91514 7bf4f09 4b91514 7bf4f09 eb9b354 7bf4f09 4b91514 7bf4f09 4b91514 7bf4f09 4b91514 c37dd2b 4b91514 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
import os
import logging
import re
import gradio as gr
import base64
import io
from PIL import Image
from typing import Iterator
from gateway import request_generation
# Setup logging
logging.basicConfig(level=logging.INFO)
# CONSTANTS
# Get max new tokens from environment variable, if it is not set, default to 2048
MAX_NEW_TOKENS: int = int(os.getenv("MAX_NEW_TOKENS", 2048))
# Get max number of images to be passed in the prompt
MAX_NUM_IMAGES: int = int(os.getenv("MAX_NUM_IMAGES"))
if not MAX_NUM_IMAGES:
raise EnvironmentError("MAX_NUM_IMAGES is not set. Please set it to 1 or more.")
# Validate environment variables
CLOUD_GATEWAY_API = os.getenv("API_ENDPOINT")
if not CLOUD_GATEWAY_API:
raise EnvironmentError("API_ENDPOINT is not set.")
MODEL_NAME: str = os.getenv("MODEL_NAME")
if not MODEL_NAME:
raise EnvironmentError("MODEL_NAME is not set.")
# Get API Key
API_KEY = os.getenv("API_KEY")
if not API_KEY: # simple check to validate API Key
raise Exception("API Key not valid.")
# Create a header, avoid declaring multiple times
HEADER = {"x-api-key": f"{API_KEY}"}
def validate_media(message: str, chat_history: list = None) -> bool:
"""Validate the number of image files in the new message.
Args:
message (str): input message from the user
chat_history (list[tuple[str, str]]): entire chat history of the session
Returns:
bool: True if the number of image files is less than or equal to MAX_NUM_IMAGES, False otherwise
"""
image_count = sum(1 for path in message["files"])
# Check if there are <image> tags in the prompt and add count
image_count += message["text"].count("<image>")
if image_count > MAX_NUM_IMAGES:
gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images at a time.")
return False
# If there are files, check if they are images
if not all(
file.lower().endswith((".png", ".jpg", ".jpeg")) for file in message["files"]
):
gr.Warning("Only images are allowed. Format available: PNG, JPG, JPEG")
return False
return True
def encode_pil_to_base64(pil_image: Image.Image, format: str) -> str:
"""Encode a PIL image to base64 string.
Args:
pil_image (Image.Image): PIL image object
format (str): format to save the image, defaults to JPEG
Returns:
str: base64 encoded string of the image
"""
buffered = io.BytesIO()
# Handle potential transparency issues for JPEG or JPG
if format == "JPEG" and pil_image.mode in ("RGBA", "LA", "P"):
# Convert to RGB
pil_image = pil_image.convert("RGB")
# Define save arguments, including quality for JPEG
save_kwargs = {"format": format}
if format == "JPEG":
save_kwargs["quality"] = 85 # Adjust quality as needed (0-100)
try:
pil_image.save(buffered, **save_kwargs)
except Exception as e:
print(f"Error saving image to buffer with format {format}: {e}")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
# Determine the MIME type based on the format
mime_format_part = format.lower()
if mime_format_part == "jpeg":
mime_type = "image/jpeg"
elif mime_format_part == "png":
mime_type = "image/png"
else:
gr.Error(f"Unsupported image format: {format}")
return None
return f"data:{mime_type};base64,{img_str}"
def process_images(message: list) -> list[dict]:
"""Process images in the message.
Args:
message (list): message list containing text and files
Returns:
list[dict]: list of dictionaries containing text and image content
"""
content = []
# Iterate through the files in the message
for path in message:
pil_image = Image.open(path)
# Get the image format
image_format = pil_image.format.upper()
if image_format == "JPG":
image_format = "JPEG"
if image_format in ["JPEG", "PNG"]:
# Converting image to base64
base64_image_data = encode_pil_to_base64(pil_image, format=image_format)
content.append(
{"type": "image_url", "image_url": {"url": base64_image_data}}
)
return content
def extract_image_urls_from_tags(message):
"""Extract image URLs from the <image> tags in the message text.
Args:
message (str): message text containing <image> tags
Returns:
list[str]: list of image URLs extracted from the <image> tags
"""
# Extract all <image> tags from the message text using regex
image_urls = re.findall(r"<image>(.*?)</image>", message, re.IGNORECASE | re.DOTALL)
# Basic cleanup: strip whitespace from found URLs
image_urls = [url.strip() for url in image_urls]
return image_urls
def process_new_user_message(message: dict) -> list[dict]:
"""Process the new user message and return a list of dictionaries containing text and image content.
Args:
message (dict): message dictionary containing text and files
Returns:
list[dict]: list of dictionaries containing text and image content
"""
# Create the content list messages
messages = []
if message["text"]:
# Remove the <image> tags from the message text
prompt = re.sub(
r"<image>.*?</image>", "", message["text"], flags=re.DOTALL | re.IGNORECASE
).strip()
# If the message text is empty after removing <image> tags, return an empty list
if not prompt:
gr.Warning("Please insert a prompt.")
return []
# If the message text is not empty, append it to the content list
messages.append({"type": "text", "text": prompt})
# processing image urls within tags
image_urls = extract_image_urls_from_tags(message["text"])
for url in image_urls:
if not url or not url.lower().startswith(("http://", "https://")):
continue
# Append the image URL to the content list
messages.append({"type": "image_url", "image_url": {"url": url}})
if message["files"]:
# If there are files, process the images
image_content = process_images(message["files"])
# Append the image content to the messages list
messages.extend(image_content)
return messages
else:
# If there are no text parts, throw a gr.Warning to insert prompt and return nothing
gr.Warning("Please insert a prompt.")
return []
def run(
message: str,
chat_history: list,
system_prompt: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
frequency_penalty: float = 0.0,
presence_penalty: float = 0.0,
) -> Iterator[str]:
"""Send a request to backend, fetch the streaming responses and emit to the UI.
Args:
message (str): input message from the user
chat_history (list[tuple[str, str]]): entire chat history of the session
system_prompt (str): system prompt
max_new_tokens (int, optional): maximum number of tokens to generate, ignoring the number of tokens in the
prompt. Defaults to 1024.
temperature (float, optional): the value used to module the next token probabilities. Defaults to 0.6.
top_p (float, optional): if set to float<1, only the smallest set of most probable tokens with probabilities
that add up to top_p or higher are kept for generation. Defaults to 0.9.
top_k (int, optional): the number of highest probability vocabulary tokens to keep for top-k-filtering.
Defaults to 50.
repetition_penalty (float, optional): the parameter for repetition penalty. 1.0 means no penalty.
Defaults to 1.2.
Yields:
Iterator[str]: Streaming responses to the UI
"""
if not validate_media(message):
# If the number of image files is not valid, return an empty string
yield ""
return
messages = []
if system_prompt:
messages.append(
{"role": "system", "content": [{"type": "text", "text": system_prompt}]}
)
# Append the new user message if it returns anything other than empty string
content = process_new_user_message(message)
if content:
# Append the new user message to the messages list
messages.append({"role": "user", "content": content})
else:
# If the content is empty, return an empty string
yield ""
return
# sample method to yield responses from the llm model
outputs = []
for text in request_generation(
header=HEADER,
messages=messages,
max_new_tokens=max_new_tokens,
temperature=temperature,
presence_penalty=presence_penalty,
frequency_penalty=frequency_penalty,
cloud_gateway_api=CLOUD_GATEWAY_API,
model_name=MODEL_NAME,
):
outputs.append(text)
yield "".join(outputs)
examples = [
["Plan a three-day trip to Washington DC for Cherry Blossom Festival."],
["How many hours does it take a man to eat a Helicopter?"],
[
{
"text": "Write the matplotlib code to generate the same bar chart.",
"files": ["assets/sample-images/barchart.png"],
}
],
[
{
"text": "Describe the atmosphere of the scene.",
"files": ["assets/sample-images/06-1.png"],
}
],
[
{
"text": "Write a short story about what might have happened in this house.",
"files": ["assets/sample-images/08.png"],
}
],
[
{
"text": "Describe the creatures that would live in this world.",
"files": ["assets/sample-images/10.png"],
}
],
[
{
"text": "Read text in the image.",
"files": ["assets/sample-images/1.png"],
}
],
[
{
"text": "When is this ticket dated and how much did it cost?",
"files": ["assets/sample-images/2.png"],
}
],
[
{
"text": "Read the text in the image into markdown.",
"files": ["assets/sample-images/3.png"],
}
],
[
{
"text": "Evaluate this integral.",
"files": ["assets/sample-images/4.png"],
}
],
[
{
"text": "Caption this image",
"files": ["assets/sample-images/01.png"],
}
],
[
{
"text": "What's the sign says?",
"files": ["assets/sample-images/02.png"],
}
],
[
{
"text": "Compare and contrast the two images.",
"files": ["assets/sample-images/03.png"],
}
],
[
{
"text": "List all the objects in the image and their colors.",
"files": ["assets/sample-images/04.png"],
}
],
]
description = f"""
This Space is an Alpha release that demonstrates [Llama-4-Maverick](https://huggingface.co./meta-llama/Llama-4-Maverick-17B-128E-Instruct) model running on AMD MI300 infrastructure. The space is built with Meta Llama 4 [License](https://www.llama.com/llama4/license/). Feel free to play with it!
"""
demo = gr.ChatInterface(
fn=run,
type="messages",
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]),
textbox=gr.MultimodalTextbox(
file_types=["image"],
file_count="single" if MAX_NUM_IMAGES == 1 else "multiple",
autofocus=True,
placeholder="Type message, drop PNG/JPEG or use <image>URL</image>...",
),
multimodal=True,
additional_inputs=[
gr.Textbox(
label="System prompt",
# value="You are a highly capable AI assistant. Provide accurate, concise, and fact-based responses that are directly relevant to the user's query. Avoid speculation, ensure logical consistency, and maintain clarity in longer outputs.",
value="",
lines=3,
),
gr.Slider(
label="Max New Tokens",
minimum=1,
maximum=MAX_NEW_TOKENS,
step=1,
value=2048,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.3,
),
gr.Slider(
label="Frequency penalty",
minimum=-2.0,
maximum=2.0,
step=0.1,
value=0.0,
),
gr.Slider(
label="Presence penalty",
minimum=-2.0,
maximum=2.0,
step=0.1,
value=0.0,
),
],
stop_btn=False,
title="Llama-4 Maverick Instruct",
description=description,
fill_height=True,
run_examples_on_click=False,
examples=examples,
css_paths="style.css",
cache_examples=False,
)
if __name__ == "__main__":
demo.queue(
max_size=int(os.getenv("QUEUE")),
default_concurrency_limit=int(os.getenv("CONCURRENCY_LIMIT")),
).launch()
|