File size: 32,927 Bytes
c4b2b37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 |
# TODO consider if this can be collapsed back down into the pipeline_train.py
import argparse
import json
import logging
import os
import random
from collections import OrderedDict
from itertools import chain
from typing import List, Tuple
import numpy as np
import torch
import torch.nn as nn
from BERT_explainability.modules.BERT.BERT_cls_lrp import \
BertForSequenceClassification as BertForClsOrigLrp
from BERT_explainability.modules.BERT.BertForSequenceClassification import \
BertForSequenceClassification as BertForSequenceClassificationTest
from BERT_explainability.modules.BERT.ExplanationGenerator import Generator
from BERT_rationale_benchmark.utils import (Annotation, Evidence,
load_datasets, load_documents,
write_jsonl)
from sklearn.metrics import accuracy_score
from transformers import BertForSequenceClassification, BertTokenizer
logging.basicConfig(
level=logging.DEBUG, format="%(relativeCreated)6d %(threadName)s %(message)s"
)
logger = logging.getLogger(__name__)
# let's make this more or less deterministic (not resistent to restarts)
random.seed(12345)
np.random.seed(67890)
torch.manual_seed(10111213)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
import numpy as np
latex_special_token = ["!@#$%^&*()"]
def generate(text_list, attention_list, latex_file, color="red", rescale_value=False):
attention_list = attention_list[: len(text_list)]
if attention_list.max() == attention_list.min():
attention_list = torch.zeros_like(attention_list)
else:
attention_list = (
100
* (attention_list - attention_list.min())
/ (attention_list.max() - attention_list.min())
)
attention_list[attention_list < 1] = 0
attention_list = attention_list.tolist()
text_list = [text_list[i].replace("$", "") for i in range(len(text_list))]
if rescale_value:
attention_list = rescale(attention_list)
word_num = len(text_list)
text_list = clean_word(text_list)
with open(latex_file, "w") as f:
f.write(
r"""\documentclass[varwidth=150mm]{standalone}
\special{papersize=210mm,297mm}
\usepackage{color}
\usepackage{tcolorbox}
\usepackage{CJK}
\usepackage{adjustbox}
\tcbset{width=0.9\textwidth,boxrule=0pt,colback=red,arc=0pt,auto outer arc,left=0pt,right=0pt,boxsep=5pt}
\begin{document}
\begin{CJK*}{UTF8}{gbsn}"""
+ "\n"
)
string = (
r"""{\setlength{\fboxsep}{0pt}\colorbox{white!0}{\parbox{0.9\textwidth}{"""
+ "\n"
)
for idx in range(word_num):
# string += "\\colorbox{%s!%s}{"%(color, attention_list[idx])+"\\strut " + text_list[idx]+"} "
# print(text_list[idx])
if "\#\#" in text_list[idx]:
token = text_list[idx].replace("\#\#", "")
string += (
"\\colorbox{%s!%s}{" % (color, attention_list[idx])
+ "\\strut "
+ token
+ "}"
)
else:
string += (
" "
+ "\\colorbox{%s!%s}{" % (color, attention_list[idx])
+ "\\strut "
+ text_list[idx]
+ "}"
)
string += "\n}}}"
f.write(string + "\n")
f.write(
r"""\end{CJK*}
\end{document}"""
)
def clean_word(word_list):
new_word_list = []
for word in word_list:
for latex_sensitive in ["\\", "%", "&", "^", "#", "_", "{", "}"]:
if latex_sensitive in word:
word = word.replace(latex_sensitive, "\\" + latex_sensitive)
new_word_list.append(word)
return new_word_list
def scores_per_word_from_scores_per_token(input, tokenizer, input_ids, scores_per_id):
words = tokenizer.convert_ids_to_tokens(input_ids)
words = [word.replace("##", "") for word in words]
score_per_char = []
# TODO: DELETE
input_ids_chars = []
for word in words:
if word in ["[CLS]", "[SEP]", "[UNK]", "[PAD]"]:
continue
input_ids_chars += list(word)
# TODO: DELETE
for i in range(len(scores_per_id)):
if words[i] in ["[CLS]", "[SEP]", "[UNK]", "[PAD]"]:
continue
score_per_char += [scores_per_id[i]] * len(words[i])
score_per_word = []
start_idx = 0
end_idx = 0
# TODO: DELETE
words_from_chars = []
for inp in input:
if start_idx >= len(score_per_char):
break
end_idx = end_idx + len(inp)
score_per_word.append(np.max(score_per_char[start_idx:end_idx]))
# TODO: DELETE
words_from_chars.append("".join(input_ids_chars[start_idx:end_idx]))
start_idx = end_idx
if words_from_chars[:-1] != input[: len(words_from_chars) - 1]:
print(words_from_chars)
print(input[: len(words_from_chars)])
print(words)
print(tokenizer.convert_ids_to_tokens(input_ids))
assert False
return torch.tensor(score_per_word)
def get_input_words(input, tokenizer, input_ids):
words = tokenizer.convert_ids_to_tokens(input_ids)
words = [word.replace("##", "") for word in words]
input_ids_chars = []
for word in words:
if word in ["[CLS]", "[SEP]", "[UNK]", "[PAD]"]:
continue
input_ids_chars += list(word)
start_idx = 0
end_idx = 0
words_from_chars = []
for inp in input:
if start_idx >= len(input_ids_chars):
break
end_idx = end_idx + len(inp)
words_from_chars.append("".join(input_ids_chars[start_idx:end_idx]))
start_idx = end_idx
if words_from_chars[:-1] != input[: len(words_from_chars) - 1]:
print(words_from_chars)
print(input[: len(words_from_chars)])
print(words)
print(tokenizer.convert_ids_to_tokens(input_ids))
assert False
return words_from_chars
def bert_tokenize_doc(
doc: List[List[str]], tokenizer, special_token_map
) -> Tuple[List[List[str]], List[List[Tuple[int, int]]]]:
"""Tokenizes a document and returns [start, end) spans to map the wordpieces back to their source words"""
sents = []
sent_token_spans = []
for sent in doc:
tokens = []
spans = []
start = 0
for w in sent:
if w in special_token_map:
tokens.append(w)
else:
tokens.extend(tokenizer.tokenize(w))
end = len(tokens)
spans.append((start, end))
start = end
sents.append(tokens)
sent_token_spans.append(spans)
return sents, sent_token_spans
def initialize_models(params: dict, batch_first: bool, use_half_precision=False):
assert batch_first
max_length = params["max_length"]
tokenizer = BertTokenizer.from_pretrained(params["bert_vocab"])
pad_token_id = tokenizer.pad_token_id
cls_token_id = tokenizer.cls_token_id
sep_token_id = tokenizer.sep_token_id
bert_dir = params["bert_dir"]
evidence_classes = dict(
(y, x) for (x, y) in enumerate(params["evidence_classifier"]["classes"])
)
evidence_classifier = BertForSequenceClassification.from_pretrained(
bert_dir, num_labels=len(evidence_classes)
)
word_interner = tokenizer.vocab
de_interner = tokenizer.ids_to_tokens
return evidence_classifier, word_interner, de_interner, evidence_classes, tokenizer
BATCH_FIRST = True
def extract_docid_from_dataset_element(element):
return next(iter(element.evidences))[0].docid
def extract_evidence_from_dataset_element(element):
return next(iter(element.evidences))
def main():
parser = argparse.ArgumentParser(
description="""Trains a pipeline model.
Step 1 is evidence identification, that is identify if a given sentence is evidence or not
Step 2 is evidence classification, that is given an evidence sentence, classify the final outcome for the final task
(e.g. sentiment or significance).
These models should be separated into two separate steps, but at the moment:
* prep data (load, intern documents, load json)
* convert data for evidence identification - in the case of training data we take all the positives and sample some
negatives
* side note: this sampling is *somewhat* configurable and is done on a per-batch/epoch basis in order to gain a
broader sampling of negative values.
* train evidence identification
* convert data for evidence classification - take all rationales + decisions and use this as input
* train evidence classification
* decode first the evidence, then run classification for each split
""",
formatter_class=argparse.RawTextHelpFormatter,
)
parser.add_argument(
"--data_dir",
dest="data_dir",
required=True,
help="Which directory contains a {train,val,test}.jsonl file?",
)
parser.add_argument(
"--output_dir",
dest="output_dir",
required=True,
help="Where shall we write intermediate models + final data to?",
)
parser.add_argument(
"--model_params",
dest="model_params",
required=True,
help="JSoN file for loading arbitrary model parameters (e.g. optimizers, pre-saved files, etc.",
)
args = parser.parse_args()
assert BATCH_FIRST
os.makedirs(args.output_dir, exist_ok=True)
with open(args.model_params, "r") as fp:
logger.info(f"Loading model parameters from {args.model_params}")
model_params = json.load(fp)
logger.info(f"Params: {json.dumps(model_params, indent=2, sort_keys=True)}")
train, val, test = load_datasets(args.data_dir)
docids = set(
e.docid
for e in chain.from_iterable(
chain.from_iterable(map(lambda ann: ann.evidences, chain(train, val, test)))
)
)
documents = load_documents(args.data_dir, docids)
logger.info(f"Loaded {len(documents)} documents")
(
evidence_classifier,
word_interner,
de_interner,
evidence_classes,
tokenizer,
) = initialize_models(model_params, batch_first=BATCH_FIRST)
logger.info(f"We have {len(word_interner)} wordpieces")
cache = os.path.join(args.output_dir, "preprocessed.pkl")
if os.path.exists(cache):
logger.info(f"Loading interned documents from {cache}")
(interned_documents) = torch.load(cache)
else:
logger.info(f"Interning documents")
interned_documents = {}
for d, doc in documents.items():
encoding = tokenizer.encode_plus(
doc,
add_special_tokens=True,
max_length=model_params["max_length"],
return_token_type_ids=False,
pad_to_max_length=False,
return_attention_mask=True,
return_tensors="pt",
truncation=True,
)
interned_documents[d] = encoding
torch.save((interned_documents), cache)
evidence_classifier = evidence_classifier.cuda()
optimizer = None
scheduler = None
save_dir = args.output_dir
logging.info(f"Beginning training classifier")
evidence_classifier_output_dir = os.path.join(save_dir, "classifier")
os.makedirs(save_dir, exist_ok=True)
os.makedirs(evidence_classifier_output_dir, exist_ok=True)
model_save_file = os.path.join(evidence_classifier_output_dir, "classifier.pt")
epoch_save_file = os.path.join(
evidence_classifier_output_dir, "classifier_epoch_data.pt"
)
device = next(evidence_classifier.parameters()).device
if optimizer is None:
optimizer = torch.optim.Adam(
evidence_classifier.parameters(),
lr=model_params["evidence_classifier"]["lr"],
)
criterion = nn.CrossEntropyLoss(reduction="none")
batch_size = model_params["evidence_classifier"]["batch_size"]
epochs = model_params["evidence_classifier"]["epochs"]
patience = model_params["evidence_classifier"]["patience"]
max_grad_norm = model_params["evidence_classifier"].get("max_grad_norm", None)
class_labels = [k for k, v in sorted(evidence_classes.items())]
results = {
"train_loss": [],
"train_f1": [],
"train_acc": [],
"val_loss": [],
"val_f1": [],
"val_acc": [],
}
best_epoch = -1
best_val_acc = 0
best_val_loss = float("inf")
best_model_state_dict = None
start_epoch = 0
epoch_data = {}
if os.path.exists(epoch_save_file):
logging.info(f"Restoring model from {model_save_file}")
evidence_classifier.load_state_dict(torch.load(model_save_file))
epoch_data = torch.load(epoch_save_file)
start_epoch = epoch_data["epoch"] + 1
# handle finishing because patience was exceeded or we didn't get the best final epoch
if bool(epoch_data.get("done", 0)):
start_epoch = epochs
results = epoch_data["results"]
best_epoch = start_epoch
best_model_state_dict = OrderedDict(
{k: v.cpu() for k, v in evidence_classifier.state_dict().items()}
)
logging.info(f"Restoring training from epoch {start_epoch}")
logging.info(
f"Training evidence classifier from epoch {start_epoch} until epoch {epochs}"
)
optimizer.zero_grad()
for epoch in range(start_epoch, epochs):
epoch_train_data = random.sample(train, k=len(train))
epoch_train_loss = 0
epoch_training_acc = 0
evidence_classifier.train()
logging.info(
f"Training with {len(epoch_train_data) // batch_size} batches with {len(epoch_train_data)} examples"
)
for batch_start in range(0, len(epoch_train_data), batch_size):
batch_elements = epoch_train_data[
batch_start : min(batch_start + batch_size, len(epoch_train_data))
]
targets = [evidence_classes[s.classification] for s in batch_elements]
targets = torch.tensor(targets, dtype=torch.long, device=device)
samples_encoding = [
interned_documents[extract_docid_from_dataset_element(s)]
for s in batch_elements
]
input_ids = (
torch.stack(
[
samples_encoding[i]["input_ids"]
for i in range(len(samples_encoding))
]
)
.squeeze(1)
.to(device)
)
attention_masks = (
torch.stack(
[
samples_encoding[i]["attention_mask"]
for i in range(len(samples_encoding))
]
)
.squeeze(1)
.to(device)
)
preds = evidence_classifier(
input_ids=input_ids, attention_mask=attention_masks
)[0]
epoch_training_acc += accuracy_score(
preds.argmax(dim=1).cpu(), targets.cpu(), normalize=False
)
loss = criterion(preds, targets.to(device=preds.device)).sum()
epoch_train_loss += loss.item()
loss.backward()
assert loss == loss # for nans
if max_grad_norm:
torch.nn.utils.clip_grad_norm_(
evidence_classifier.parameters(), max_grad_norm
)
optimizer.step()
if scheduler:
scheduler.step()
optimizer.zero_grad()
epoch_train_loss /= len(epoch_train_data)
epoch_training_acc /= len(epoch_train_data)
assert epoch_train_loss == epoch_train_loss # for nans
results["train_loss"].append(epoch_train_loss)
logging.info(f"Epoch {epoch} training loss {epoch_train_loss}")
logging.info(f"Epoch {epoch} training accuracy {epoch_training_acc}")
with torch.no_grad():
epoch_val_loss = 0
epoch_val_acc = 0
epoch_val_data = random.sample(val, k=len(val))
evidence_classifier.eval()
val_batch_size = 32
logging.info(
f"Validating with {len(epoch_val_data) // val_batch_size} batches with {len(epoch_val_data)} examples"
)
for batch_start in range(0, len(epoch_val_data), val_batch_size):
batch_elements = epoch_val_data[
batch_start : min(batch_start + val_batch_size, len(epoch_val_data))
]
targets = [evidence_classes[s.classification] for s in batch_elements]
targets = torch.tensor(targets, dtype=torch.long, device=device)
samples_encoding = [
interned_documents[extract_docid_from_dataset_element(s)]
for s in batch_elements
]
input_ids = (
torch.stack(
[
samples_encoding[i]["input_ids"]
for i in range(len(samples_encoding))
]
)
.squeeze(1)
.to(device)
)
attention_masks = (
torch.stack(
[
samples_encoding[i]["attention_mask"]
for i in range(len(samples_encoding))
]
)
.squeeze(1)
.to(device)
)
preds = evidence_classifier(
input_ids=input_ids, attention_mask=attention_masks
)[0]
epoch_val_acc += accuracy_score(
preds.argmax(dim=1).cpu(), targets.cpu(), normalize=False
)
loss = criterion(preds, targets.to(device=preds.device)).sum()
epoch_val_loss += loss.item()
epoch_val_loss /= len(val)
epoch_val_acc /= len(val)
results["val_acc"].append(epoch_val_acc)
results["val_loss"] = epoch_val_loss
logging.info(f"Epoch {epoch} val loss {epoch_val_loss}")
logging.info(f"Epoch {epoch} val acc {epoch_val_acc}")
if epoch_val_acc > best_val_acc or (
epoch_val_acc == best_val_acc and epoch_val_loss < best_val_loss
):
best_model_state_dict = OrderedDict(
{k: v.cpu() for k, v in evidence_classifier.state_dict().items()}
)
best_epoch = epoch
best_val_acc = epoch_val_acc
best_val_loss = epoch_val_loss
epoch_data = {
"epoch": epoch,
"results": results,
"best_val_acc": best_val_acc,
"done": 0,
}
torch.save(evidence_classifier.state_dict(), model_save_file)
torch.save(epoch_data, epoch_save_file)
logging.debug(
f"Epoch {epoch} new best model with val accuracy {epoch_val_acc}"
)
if epoch - best_epoch > patience:
logging.info(f"Exiting after epoch {epoch} due to no improvement")
epoch_data["done"] = 1
torch.save(epoch_data, epoch_save_file)
break
epoch_data["done"] = 1
epoch_data["results"] = results
torch.save(epoch_data, epoch_save_file)
evidence_classifier.load_state_dict(best_model_state_dict)
evidence_classifier = evidence_classifier.to(device=device)
evidence_classifier.eval()
# test
test_classifier = BertForSequenceClassificationTest.from_pretrained(
model_params["bert_dir"], num_labels=len(evidence_classes)
).to(device)
orig_lrp_classifier = BertForClsOrigLrp.from_pretrained(
model_params["bert_dir"], num_labels=len(evidence_classes)
).to(device)
if os.path.exists(epoch_save_file):
logging.info(f"Restoring model from {model_save_file}")
test_classifier.load_state_dict(torch.load(model_save_file))
orig_lrp_classifier.load_state_dict(torch.load(model_save_file))
test_classifier.eval()
orig_lrp_classifier.eval()
test_batch_size = 1
logging.info(
f"Testing with {len(test) // test_batch_size} batches with {len(test)} examples"
)
# explainability
explanations = Generator(test_classifier)
explanations_orig_lrp = Generator(orig_lrp_classifier)
method = "transformer_attribution"
method_folder = {
"transformer_attribution": "ours",
"partial_lrp": "partial_lrp",
"last_attn": "last_attn",
"attn_gradcam": "attn_gradcam",
"lrp": "lrp",
"rollout": "rollout",
"ground_truth": "ground_truth",
"generate_all": "generate_all",
}
method_expl = {
"transformer_attribution": explanations.generate_LRP,
"partial_lrp": explanations_orig_lrp.generate_LRP_last_layer,
"last_attn": explanations_orig_lrp.generate_attn_last_layer,
"attn_gradcam": explanations_orig_lrp.generate_attn_gradcam,
"lrp": explanations_orig_lrp.generate_full_lrp,
"rollout": explanations_orig_lrp.generate_rollout,
}
os.makedirs(os.path.join(args.output_dir, method_folder[method]), exist_ok=True)
result_files = []
for i in range(5, 85, 5):
result_files.append(
open(
os.path.join(
args.output_dir, "{0}/identifier_results_{1}.json"
).format(method_folder[method], i),
"w",
)
)
j = 0
for batch_start in range(0, len(test), test_batch_size):
batch_elements = test[
batch_start : min(batch_start + test_batch_size, len(test))
]
targets = [evidence_classes[s.classification] for s in batch_elements]
targets = torch.tensor(targets, dtype=torch.long, device=device)
samples_encoding = [
interned_documents[extract_docid_from_dataset_element(s)]
for s in batch_elements
]
input_ids = (
torch.stack(
[
samples_encoding[i]["input_ids"]
for i in range(len(samples_encoding))
]
)
.squeeze(1)
.to(device)
)
attention_masks = (
torch.stack(
[
samples_encoding[i]["attention_mask"]
for i in range(len(samples_encoding))
]
)
.squeeze(1)
.to(device)
)
preds = test_classifier(
input_ids=input_ids, attention_mask=attention_masks
)[0]
for s in batch_elements:
doc_name = extract_docid_from_dataset_element(s)
inp = documents[doc_name].split()
classification = "neg" if targets.item() == 0 else "pos"
is_classification_correct = 1 if preds.argmax(dim=1) == targets else 0
if method == "generate_all":
file_name = "{0}_{1}_{2}.tex".format(
j, classification, is_classification_correct
)
GT_global = os.path.join(
args.output_dir, "{0}/visual_results_{1}.pdf"
).format(method_folder["ground_truth"], j)
GT_ours = os.path.join(
args.output_dir, "{0}/{1}_GT_{2}_{3}.pdf"
).format(
method_folder["transformer_attribution"],
j,
classification,
is_classification_correct,
)
CF_ours = os.path.join(args.output_dir, "{0}/{1}_CF.pdf").format(
method_folder["transformer_attribution"], j
)
GT_partial = os.path.join(
args.output_dir, "{0}/{1}_GT_{2}_{3}.pdf"
).format(
method_folder["partial_lrp"],
j,
classification,
is_classification_correct,
)
CF_partial = os.path.join(args.output_dir, "{0}/{1}_CF.pdf").format(
method_folder["partial_lrp"], j
)
GT_gradcam = os.path.join(
args.output_dir, "{0}/{1}_GT_{2}_{3}.pdf"
).format(
method_folder["attn_gradcam"],
j,
classification,
is_classification_correct,
)
CF_gradcam = os.path.join(args.output_dir, "{0}/{1}_CF.pdf").format(
method_folder["attn_gradcam"], j
)
GT_lrp = os.path.join(
args.output_dir, "{0}/{1}_GT_{2}_{3}.pdf"
).format(
method_folder["lrp"],
j,
classification,
is_classification_correct,
)
CF_lrp = os.path.join(args.output_dir, "{0}/{1}_CF.pdf").format(
method_folder["lrp"], j
)
GT_lastattn = os.path.join(
args.output_dir, "{0}/{1}_GT_{2}_{3}.pdf"
).format(
method_folder["last_attn"],
j,
classification,
is_classification_correct,
)
GT_rollout = os.path.join(
args.output_dir, "{0}/{1}_GT_{2}_{3}.pdf"
).format(
method_folder["rollout"],
j,
classification,
is_classification_correct,
)
with open(file_name, "w") as f:
f.write(
r"""\documentclass[varwidth]{standalone}
\usepackage{color}
\usepackage{tcolorbox}
\usepackage{CJK}
\tcbset{width=0.9\textwidth,boxrule=0pt,colback=red,arc=0pt,auto outer arc,left=0pt,right=0pt,boxsep=5pt}
\begin{document}
\begin{CJK*}{UTF8}{gbsn}
{\setlength{\fboxsep}{0pt}\colorbox{white!0}{\parbox{0.9\textwidth}{
\setlength{\tabcolsep}{2pt} % Default value: 6pt
\begin{tabular}{ccc}
\includegraphics[width=0.32\linewidth]{"""
+ GT_global
+ """}&
\includegraphics[width=0.32\linewidth]{"""
+ GT_ours
+ """}&
\includegraphics[width=0.32\linewidth]{"""
+ CF_ours
+ """}\\\\
(a) & (b) & (c)\\\\
\includegraphics[width=0.32\linewidth]{"""
+ GT_partial
+ """}&
\includegraphics[width=0.32\linewidth]{"""
+ CF_partial
+ """}&
\includegraphics[width=0.32\linewidth]{"""
+ GT_gradcam
+ """}\\\\
(d) & (e) & (f)\\\\
\includegraphics[width=0.32\linewidth]{"""
+ CF_gradcam
+ """}&
\includegraphics[width=0.32\linewidth]{"""
+ GT_lrp
+ """}&
\includegraphics[width=0.32\linewidth]{"""
+ CF_lrp
+ """}\\\\
(g) & (h) & (i)\\\\
\includegraphics[width=0.32\linewidth]{"""
+ GT_lastattn
+ """}&
\includegraphics[width=0.32\linewidth]{"""
+ GT_rollout
+ """}&\\\\
(j) & (k)&\\\\
\end{tabular}
}}}
\end{CJK*}
\end{document}
)"""
)
j += 1
break
if method == "ground_truth":
inp_cropped = get_input_words(inp, tokenizer, input_ids[0])
cam = torch.zeros(len(inp_cropped))
for evidence in extract_evidence_from_dataset_element(s):
start_idx = evidence.start_token
if start_idx >= len(cam):
break
end_idx = evidence.end_token
cam[start_idx:end_idx] = 1
generate(
inp_cropped,
cam,
(
os.path.join(
args.output_dir, "{0}/visual_results_{1}.tex"
).format(method_folder[method], j)
),
color="green",
)
j = j + 1
break
text = tokenizer.convert_ids_to_tokens(input_ids[0])
classification = "neg" if targets.item() == 0 else "pos"
is_classification_correct = 1 if preds.argmax(dim=1) == targets else 0
target_idx = targets.item()
cam_target = method_expl[method](
input_ids=input_ids,
attention_mask=attention_masks,
index=target_idx,
)[0]
cam_target = cam_target.clamp(min=0)
generate(
text,
cam_target,
(
os.path.join(args.output_dir, "{0}/{1}_GT_{2}_{3}.tex").format(
method_folder[method],
j,
classification,
is_classification_correct,
)
),
)
if method in [
"transformer_attribution",
"partial_lrp",
"attn_gradcam",
"lrp",
]:
cam_false_class = method_expl[method](
input_ids=input_ids,
attention_mask=attention_masks,
index=1 - target_idx,
)[0]
cam_false_class = cam_false_class.clamp(min=0)
generate(
text,
cam_false_class,
(
os.path.join(args.output_dir, "{0}/{1}_CF.tex").format(
method_folder[method], j
)
),
)
cam = cam_target
cam = scores_per_word_from_scores_per_token(
inp, tokenizer, input_ids[0], cam
)
j = j + 1
doc_name = extract_docid_from_dataset_element(s)
hard_rationales = []
for res, i in enumerate(range(5, 85, 5)):
print("calculating top ", i)
_, indices = cam.topk(k=i)
for index in indices.tolist():
hard_rationales.append(
{"start_token": index, "end_token": index + 1}
)
result_dict = {
"annotation_id": doc_name,
"rationales": [
{
"docid": doc_name,
"hard_rationale_predictions": hard_rationales,
}
],
}
result_files[res].write(json.dumps(result_dict) + "\n")
for i in range(len(result_files)):
result_files[i].close()
if __name__ == "__main__":
main()
|