Spaces:
Sleeping
Sleeping
import ccxt | |
import ccxt.async_support as ccxt | |
import pandas as pd | |
from datetime import datetime, timedelta | |
from prophet import Prophet | |
import matplotlib.pyplot as plt | |
import streamlit as st | |
# Initialize the exchange | |
binance = ccxt.bitget() | |
symbol = "BTC/USDT" | |
def fetch_btc_usdt_data(start_date, end_date): | |
since = int(datetime.strptime(start_date, '%Y-%m-%d').timestamp() * 1000) | |
end = int(datetime.strptime(end_date, '%Y-%m-%d').timestamp() * 1000) | |
timeframe = '1d' # Daily data | |
data = [] | |
while since < end: | |
ohlcv = binance.fetch_ohlcv(symbol, timeframe, since, limit=1000) | |
if not ohlcv: | |
break | |
since = ohlcv[-1][0] + 1 | |
data.extend(ohlcv) | |
# Convert data to DataFrame | |
columns = ['timestamps', 'open', 'high', 'low', 'close', 'volume'] | |
df = pd.DataFrame(data, columns=columns) | |
df['timestamps'] = pd.to_datetime(df['timestamps'], unit='ms') | |
df.set_index('timestamps', inplace=True) | |
# Return the DataFrame | |
return df | |
def train_and_forecast(df): | |
# Prepare the data for Prophet | |
df_prophet = df[['close']].reset_index() | |
df_prophet.rename(columns={'timestamps': 'ds', 'close': 'y'}, inplace=True) | |
# Train the Prophet model | |
model = Prophet(daily_seasonality=True) | |
model.fit(df_prophet) | |
# Make a future dataframe for predictions (e.g., next 30 days) | |
future = model.make_future_dataframe(periods=30, freq='D') | |
# Get the forecast | |
forecast = model.predict(future) | |
return forecast, model | |
def plot_forecast(forecast, model): | |
# Plot the forecast | |
fig, ax = plt.subplots(figsize=(10, 6)) | |
model.plot(forecast, ax=ax) | |
# Plot the components | |
fig2, ax2 = plt.subplots(figsize=(10, 6)) | |
model.plot_components(forecast) | |
return fig, fig2 | |
# Streamlit UI | |
st.title("BTC/USDT Price Forecasting") | |
st.markdown(""" | |
This app uses Facebook's Prophet model to forecast the future prices of BTC/USDT based on historical data from Bitget. | |
You can select the start and end dates to get a prediction for the next 30 days. | |
""") | |
# Date input | |
start_date = st.date_input('Start Date', datetime.today() - timedelta(days=365)) | |
end_date = st.date_input('End Date', datetime.today()) | |
if start_date and end_date: | |
# Fetch the data | |
df = fetch_btc_usdt_data(start_date.strftime('%Y-%m-%d'), end_date.strftime('%Y-%m-%d')) | |
# Train and forecast | |
forecast, model = train_and_forecast(df) | |
# Plot the forecast and components | |
st.subheader("Forecast Plot") | |
fig1, fig2 = plot_forecast(forecast, model) | |
st.pyplot(fig1) # Forecast plot | |
st.pyplot(fig2) # Components plot | |