File size: 3,826 Bytes
9475ff0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd02d7a
9475ff0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd02d7a
9475ff0
bd02d7a
9475ff0
 
bd02d7a
 
 
9475ff0
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import base64
import io
import logging
from typing import List, Optional

import torch
import torchaudio
import uvicorn
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel

from generator import load_csm_1b, Segment

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

app = FastAPI(
    title="CSM 1B API",
    description="API for Sesame's Conversational Speech Model",
    version="1.0.0",
)

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

generator = None

class SegmentRequest(BaseModel):
    speaker: int
    text: str
    audio_base64: Optional[str] = None

class GenerateAudioRequest(BaseModel):
    text: str
    speaker: int
    context: List[SegmentRequest] = []
    max_audio_length_ms: float = 10000
    temperature: float = 0.9
    topk: int = 50

class AudioResponse(BaseModel):
    audio_base64: str
    sample_rate: int

@app.on_event("startup")
async def startup_event():
    global generator
    logger.info("Loading CSM 1B model...")
    
    device = "cuda" if torch.cuda.is_available() else "cpu"
    if device == "cpu":
        logger.warning("GPU not available. Using CPU, performance may be slow!")
    
    try:
        generator = load_csm_1b(device=device)
        logger.info(f"Model loaded successfully on device: {device}")
    except Exception as e:
        logger.error(f"Could not load model: {str(e)}")
        raise e

@app.post("/generate-audio", response_model=AudioResponse)
async def generate_audio(request: GenerateAudioRequest):
    global generator
    
    if generator is None:
        raise HTTPException(status_code=503, detail="Model not loaded. Please try again later.")
    
    try:
        context_segments = []
        for segment in request.context:
            if segment.audio_base64:
                audio_bytes = base64.b64decode(segment.audio_base64)
                audio_buffer = io.BytesIO(audio_bytes)
                
                audio_tensor, sample_rate = torchaudio.load(audio_buffer)
                audio_tensor = torchaudio.functional.resample(
                    audio_tensor.squeeze(0), 
                    orig_freq=sample_rate, 
                    new_freq=generator.sample_rate
                )
            else:
                audio_tensor = torch.zeros(0, dtype=torch.float32)
            
            context_segments.append(
                Segment(text=segment.text, speaker=segment.speaker, audio=audio_tensor)
            )
        
        audio = generator.generate(
            text=request.text,
            speaker=request.speaker,
            context=context_segments,
            max_audio_length_ms=request.max_audio_length_ms,
            temperature=request.temperature,
            topk=request.topk,
        )
        
        buffer = io.BytesIO()
        torchaudio.save(buffer, audio.unsqueeze(0).cpu(), generator.sample_rate, format="wav")
        # torchaudio.save("audio.wav", audio.unsqueeze(0).cpu(), generator.sample_rate)
        buffer.seek(0)
        # audio_base64 = base64.b64encode(buffer.read()).decode("utf-8")
        
        return AudioResponse(
            content=buffer.read(),
            media_type="audio/wav",
            headers={"Content-Disposition": "attachment; filename=audio.wav"}
        )
        
    except Exception as e:
        logger.error(f"error when building audio: {str(e)}")
        raise HTTPException(status_code=500, detail=f"error when building audio: {str(e)}")

@app.get("/health")
async def health_check():
    if generator is None:
        return {"status": "not_ready", "message": "Model is loading"}
    return {"status": "ready", "message": "API is ready to serve"}