File size: 10,897 Bytes
69a5801
 
 
 
9605f46
 
69a5801
ca183c0
9605f46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0af3c6
9605f46
 
 
 
 
 
69a5801
 
 
 
 
 
 
 
 
 
9605f46
 
 
 
 
ca183c0
9605f46
69a5801
9605f46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69a5801
9605f46
 
 
69a5801
 
 
 
 
 
9605f46
 
69a5801
 
9605f46
 
 
 
 
 
 
69a5801
 
 
 
9605f46
 
 
 
 
 
69a5801
9605f46
69a5801
 
9605f46
69a5801
 
 
 
 
 
 
 
 
9605f46
 
 
 
 
 
69a5801
 
 
 
 
 
9605f46
 
 
 
69a5801
 
 
 
 
 
 
 
 
 
9605f46
 
 
 
 
 
 
 
69a5801
9605f46
 
 
 
 
 
 
 
 
 
 
 
 
69a5801
9605f46
 
 
 
 
 
69a5801
 
9605f46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69a5801
 
9605f46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69a5801
9605f46
69a5801
9605f46
 
 
69a5801
9605f46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca183c0
9605f46
69a5801
9605f46
69a5801
 
9605f46
 
 
ca183c0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import base64
import io
import logging
from typing import List
import os
import sys

import numpy as np
import gradio as gr

# Import các module cần thiết
try:
    import torch
    import torchaudio
    HAS_TORCH = True
except ImportError:
    HAS_TORCH = False
    logging.warning("PyTorch not available. Using mock generator.")

# Tạo lớp Mock để sử dụng khi không có PyTorch hoặc model bị lỗi
class MockGenerator:
    def __init__(self):
        self.sample_rate = 24000
        logging.info("Created mock generator with sample rate 24000")
    
    def generate(self, text, speaker, context=None, max_audio_length_ms=10000, temperature=0.9, topk=50):
        # Tạo âm thanh giả - chỉ là silence với độ dài tỷ lệ với text
        duration_seconds = min(len(text) * 0.1, max_audio_length_ms / 1000)
        samples = int(duration_seconds * self.sample_rate)
        logging.info(f"Generating mock audio with {samples} samples")
        return np.zeros(samples, dtype=np.float32)

# Định nghĩa lớp Segment giả khi cần
class MockSegment:
    def __init__(self, text, speaker, audio=None):
        self.text = text
        self.speaker = speaker
        self.audio = audio if audio is not None else np.zeros(0, dtype=np.float32)

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

generator = None

def initialize_model():
    global generator
    logger.info("Loading CSM 1B model...")
    
    # Nếu không có PyTorch, sử dụng mock
    if not HAS_TORCH:
        logger.warning("PyTorch not available. Using mock generator.")
        generator = MockGenerator()
        return True
    
    # Có PyTorch, thử tải model thật
    try:
        # Kiểm tra và tải các thư viện cần thiết
        import sys
        # Thêm thư mục hiện tại vào PATH để đảm bảo import được các module cần thiết
        if os.getcwd() not in sys.path:
            sys.path.append(os.getcwd())
        
        # Thử import từ generator module (theo hướng dẫn chính thức)
        try:
            from generator import load_csm_1b, Segment
            
            device = "cuda" if torch.cuda.is_available() else "cpu"
            if device == "cpu":
                logger.warning("GPU not available. Using CPU, performance may be slow!")
            logger.info(f"Using device: {device}")
            
            # Tải model theo cách chính thức
            generator = load_csm_1b(device=device)
            logger.info(f"Model loaded successfully on device: {device}")
            return True
        except Exception as e:
            logger.error(f"Error loading model: {str(e)}")
            # Tải mock generator trong trường hợp lỗi
            logger.warning("Falling back to mock generator")
            generator = MockGenerator()
            return True
            
    except Exception as e:
        logger.error(f"Critical error: {str(e)}")
        generator = MockGenerator()
        return True

def generate_speech(text, speaker_id, max_audio_length_ms=10000, temperature=0.9, topk=50, context_texts=None, context_speakers=None):
    global generator
    
    if generator is None:
        if not initialize_model():
            # Sử dụng mock generator nếu không khởi tạo được
            generator = MockGenerator()
    
    try:
        # Xác định Segment class để sử dụng
        try:
            from generator import Segment
        except ImportError:
            Segment = MockSegment
        
        # Xử lý context nếu có
        context_segments = []
        if context_texts and context_speakers:
            for ctx_text, ctx_speaker in zip(context_texts, context_speakers):
                if ctx_text and ctx_speaker is not None:
                    # Tạo audio tensor rỗng cho context
                    if HAS_TORCH:
                        audio_tensor = torch.zeros(0, dtype=torch.float32)
                    else:
                        audio_tensor = np.zeros(0, dtype=np.float32)
                    
                    context_segments.append(
                        Segment(text=ctx_text, speaker=int(ctx_speaker), audio=audio_tensor)
                    )
        
        # Generate audio từ text
        audio = generator.generate(
            text=text,
            speaker=int(speaker_id),
            context=context_segments,
            max_audio_length_ms=float(max_audio_length_ms),
            temperature=float(temperature),
            topk=int(topk),
        )
        
        # Chuyển đổi tensor sang numpy array cho Gradio
        if HAS_TORCH and isinstance(audio, torch.Tensor):
            audio_numpy = audio.cpu().numpy()
        else:
            audio_numpy = audio  # Đã là numpy từ MockGenerator
            
        sample_rate = generator.sample_rate
        
        return (sample_rate, audio_numpy), None
    
    except Exception as e:
        logger.error(f"Error generating audio: {str(e)}")
        # Sử dụng mock generator trong trường hợp lỗi
        mock_gen = MockGenerator()
        audio = mock_gen.generate(text=text, speaker=int(speaker_id), max_audio_length_ms=float(max_audio_length_ms))
        return (mock_gen.sample_rate, audio), f"Error generating audio, using silent audio: {str(e)}"

def clear_context():
    return [], []

def add_context(text, speaker_id, context_texts, context_speakers):
    if text and speaker_id is not None:
        context_texts.append(text)
        context_speakers.append(int(speaker_id))
    return context_texts, context_speakers

def update_context_display(texts, speakers):
    if not texts or not speakers:
        return []
    return [[text, speaker] for text, speaker in zip(texts, speakers)]

def create_demo():
    # Set up Gradio interface
    demo = gr.Blocks(title="CSM 1B Demo")
    
    with demo:
        gr.Markdown("# CSM 1B - Conversational Speech Model")
        gr.Markdown("Enter text to generate natural-sounding speech with the CSM 1B model")
        
        if not HAS_TORCH:
            gr.Markdown("⚠️ **WARNING: PyTorch is not available. Using a mock generator that produces silent audio.**")
        
        with gr.Row():
            with gr.Column(scale=2):
                text_input = gr.Textbox(
                    label="Text to convert to speech",
                    placeholder="Enter your text here...",
                    lines=3
                )
                speaker_id = gr.Slider(
                    label="Speaker ID",
                    minimum=0,
                    maximum=10,
                    step=1,
                    value=0
                )
                
                with gr.Accordion("Advanced Options", open=False):
                    max_length = gr.Slider(
                        label="Maximum length (milliseconds)",
                        minimum=1000,
                        maximum=30000,
                        step=1000,
                        value=10000
                    )
                    temp = gr.Slider(
                        label="Temperature",
                        minimum=0.1,
                        maximum=1.5,
                        step=0.1,
                        value=0.9
                    )
                    top_k = gr.Slider(
                        label="Top K",
                        minimum=10,
                        maximum=100,
                        step=10,
                        value=50
                    )
                
                with gr.Accordion("Conversation Context", open=False):
                    context_list = gr.State([])
                    context_speakers_list = gr.State([])
                    
                    with gr.Row():
                        context_text = gr.Textbox(label="Context text", lines=2)
                        context_speaker = gr.Slider(
                            label="Context speaker ID",
                            minimum=0,
                            maximum=10,
                            step=1,
                            value=0
                        )
                    
                    with gr.Row():
                        add_ctx_btn = gr.Button("Add Context")
                        clear_ctx_btn = gr.Button("Clear All Context")
                    
                    context_display = gr.Dataframe(
                        headers=["Text", "Speaker ID"],
                        label="Current Context",
                        interactive=False
                    )
                
                generate_btn = gr.Button("Generate Audio", variant="primary")
            
            with gr.Column(scale=1):
                audio_output = gr.Audio(label="Generated Audio", type="numpy")
                error_output = gr.Textbox(label="Error Message", visible=False)
        
        # Connect events
        generate_btn.click(
            fn=generate_speech,
            inputs=[
                text_input,
                speaker_id,
                max_length,
                temp,
                top_k,
                context_list,
                context_speakers_list
            ],
            outputs=[audio_output, error_output]
        )
        
        add_ctx_btn.click(
            fn=add_context,
            inputs=[
                context_text,
                context_speaker,
                context_list,
                context_speakers_list
            ],
            outputs=[context_list, context_speakers_list]
        ).then(
            fn=update_context_display,
            inputs=[context_list, context_speakers_list],
            outputs=[context_display]
        )
        
        clear_ctx_btn.click(
            fn=clear_context,
            inputs=[],
            outputs=[context_list, context_speakers_list]
        ).then(
            fn=lambda: [],
            inputs=[],
            outputs=[context_display]
        )
        
        gr.Markdown("""
        ## About CSM-1B

        CSM (Conversational Speech Model) is a speech generation model from Sesame that generates audio from text inputs. 
        The model can generate a variety of voices and works best when provided with conversational context.

        ### Features:
        - Generate natural-sounding speech from text
        - Choose different speaker identities (0-10)
        - Adjust temperature to control output variability
        - Add conversation context for more natural responses

        [View on Hugging Face](https://huggingface.co./sesame/csm-1b) | [GitHub Repository](https://github.com/SesameAILabs/csm)
        """)
    
    return demo

# Khởi tạo model
initialize_model()

# Tạo và khởi chạy demo
demo = create_demo()
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)