Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,52 +7,83 @@ from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
7 |
import torch
|
8 |
import psutil
|
9 |
import GPUtil
|
10 |
-
|
|
|
11 |
logging.basicConfig(level=logging.INFO)
|
12 |
logger = logging.getLogger(__name__)
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
def get_system_metrics():
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
gpu_util = 0
|
23 |
-
gpu_memory = 0
|
24 |
-
return cpu_percent, memory_percent, gpu_util, gpu_memory
|
25 |
|
26 |
def process_query(query, dataset_choice="all"):
|
27 |
start_time = time.time()
|
28 |
try:
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
#
|
33 |
-
|
34 |
-
processing_time =
|
35 |
-
cpu_percent, memory_percent, gpu_util, gpu_memory = get_system_metrics()
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
GPU
|
43 |
-
GPU Memory: {gpu_memory:.1f}%
|
44 |
"""
|
45 |
|
46 |
-
return response,
|
47 |
|
48 |
except Exception as e:
|
49 |
-
return str(e), "Metrics
|
50 |
|
51 |
-
#
|
52 |
demo = gr.Interface(
|
53 |
fn=process_query,
|
54 |
inputs=[
|
55 |
-
gr.Textbox(label="Question", placeholder="Ask
|
56 |
gr.Dropdown(
|
57 |
choices=["all"] + dataset_names,
|
58 |
label="Select Dataset",
|
@@ -63,16 +94,10 @@ demo = gr.Interface(
|
|
63 |
gr.Textbox(label="Response"),
|
64 |
gr.Textbox(label="Performance Metrics")
|
65 |
],
|
66 |
-
title="E5-Powered
|
67 |
-
description="Search across RagBench datasets with
|
68 |
-
analytics_enabled=True,
|
69 |
-
examples=[
|
70 |
-
["What role does T-cell count play in severe human adenovirus type 55 (HAdV-55) infection?", "covidqa"],
|
71 |
-
["In what school district is Governor John R. Rogers High School located?", "hotpotqa"],
|
72 |
-
["What are the key financial metrics for Q3?", "finqa"]
|
73 |
-
]
|
74 |
)
|
75 |
|
76 |
if __name__ == "__main__":
|
77 |
-
demo.queue()
|
78 |
-
demo.launch(debug=True
|
|
|
7 |
import torch
|
8 |
import psutil
|
9 |
import GPUtil
|
10 |
+
|
11 |
+
# Set up logging
|
12 |
logging.basicConfig(level=logging.INFO)
|
13 |
logger = logging.getLogger(__name__)
|
14 |
|
15 |
+
# Initialize OpenAI API key
|
16 |
+
openai.api_key = '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'
|
17 |
+
|
18 |
+
# Initialize with E5 embedding model
|
19 |
+
model_name = 'intfloat/e5-base-v2'
|
20 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
+
embedding_model = HuggingFaceEmbeddings(model_name=model_name)
|
22 |
+
embedding_model.client.to(device)
|
23 |
+
|
24 |
+
# Load datasets
|
25 |
+
datasets = {}
|
26 |
+
dataset_names = ['covidqa', 'hotpotqa', 'pubmedqa'] # Starting with key datasets
|
27 |
+
|
28 |
+
for name in dataset_names:
|
29 |
+
datasets[name] = load_dataset("rungalileo/ragbench", name, split='train')
|
30 |
+
logger.info(f"Loaded {name}")
|
31 |
+
|
32 |
def get_system_metrics():
|
33 |
+
metrics = {
|
34 |
+
'cpu_percent': psutil.cpu_percent(),
|
35 |
+
'memory_percent': psutil.virtual_memory().percent,
|
36 |
+
'gpu_util': GPUtil.getGPUs()[0].load * 100 if torch.cuda.is_available() else 0,
|
37 |
+
'gpu_memory': GPUtil.getGPUs()[0].memoryUtil * 100 if torch.cuda.is_available() else 0
|
38 |
+
}
|
39 |
+
return metrics
|
|
|
|
|
|
|
40 |
|
41 |
def process_query(query, dataset_choice="all"):
|
42 |
start_time = time.time()
|
43 |
try:
|
44 |
+
relevant_contexts = []
|
45 |
+
search_datasets = [dataset_choice] if dataset_choice != "all" else datasets.keys()
|
46 |
+
|
47 |
+
for dataset_name in search_datasets:
|
48 |
+
if dataset_name in datasets:
|
49 |
+
for doc in datasets[dataset_name]['documents']:
|
50 |
+
if any(keyword.lower() in doc.lower() for keyword in query.split()):
|
51 |
+
relevant_contexts.append((doc, dataset_name))
|
52 |
+
|
53 |
+
context_info = f"From {relevant_contexts[0][1]}: {relevant_contexts[0][0]}" if relevant_contexts else "Searching across datasets..."
|
54 |
+
|
55 |
+
response = openai.chat.completions.create(
|
56 |
+
model="gpt-3.5-turbo",
|
57 |
+
messages=[
|
58 |
+
{"role": "system", "content": "You are a knowledgeable expert using E5 embeddings for precise information retrieval."},
|
59 |
+
{"role": "user", "content": f"Context: {context_info}\nQuestion: {query}"}
|
60 |
+
],
|
61 |
+
max_tokens=300,
|
62 |
+
temperature=0.7,
|
63 |
+
)
|
64 |
|
65 |
+
# Get performance metrics
|
66 |
+
metrics = get_system_metrics()
|
67 |
+
metrics['processing_time'] = time.time() - start_time
|
|
|
68 |
|
69 |
+
metrics_display = f"""
|
70 |
+
Processing Time: {metrics['processing_time']:.2f}s
|
71 |
+
CPU Usage: {metrics['cpu_percent']}%
|
72 |
+
Memory Usage: {metrics['memory_percent']}%
|
73 |
+
GPU Utilization: {metrics['gpu_util']:.1f}%
|
74 |
+
GPU Memory: {metrics['gpu_memory']:.1f}%
|
|
|
75 |
"""
|
76 |
|
77 |
+
return response.choices[0].message.content.strip(), metrics_display
|
78 |
|
79 |
except Exception as e:
|
80 |
+
return str(e), "Metrics collection in progress"
|
81 |
|
82 |
+
# Create Gradio interface
|
83 |
demo = gr.Interface(
|
84 |
fn=process_query,
|
85 |
inputs=[
|
86 |
+
gr.Textbox(label="Question", placeholder="Ask your question here"),
|
87 |
gr.Dropdown(
|
88 |
choices=["all"] + dataset_names,
|
89 |
label="Select Dataset",
|
|
|
94 |
gr.Textbox(label="Response"),
|
95 |
gr.Textbox(label="Performance Metrics")
|
96 |
],
|
97 |
+
title="E5-Powered Knowledge Base",
|
98 |
+
description="Search across RagBench datasets with performance monitoring"
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
)
|
100 |
|
101 |
if __name__ == "__main__":
|
102 |
+
demo.queue()
|
103 |
+
demo.launch(debug=True)
|