Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,803 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import plotly.graph_objects as go
|
3 |
+
from transformers import pipeline
|
4 |
+
import re
|
5 |
+
import time
|
6 |
+
import requests
|
7 |
+
from PIL import Image
|
8 |
+
import itertools
|
9 |
+
import numpy as np
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
from matplotlib.colors import rgb2hex
|
12 |
+
import matplotlib
|
13 |
+
from matplotlib.colors import ListedColormap, rgb2hex
|
14 |
+
import ipywidgets as widgets
|
15 |
+
from IPython.display import display, HTML
|
16 |
+
import re
|
17 |
+
import pandas as pd
|
18 |
+
from pprint import pprint
|
19 |
+
from tenacity import retry
|
20 |
+
from tqdm import tqdm
|
21 |
+
import tiktoken
|
22 |
+
import scipy.stats
|
23 |
+
import torch
|
24 |
+
from transformers import GPT2LMHeadModel
|
25 |
+
import tiktoken
|
26 |
+
import seaborn as sns
|
27 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
28 |
+
# from colorama import Fore, Style
|
29 |
+
import openai # for OpenAI API calls
|
30 |
+
|
31 |
+
######################################
|
32 |
+
import streamlit as st
|
33 |
+
def colorize_tokens(token_data, sentence):
|
34 |
+
colored_sentence = ""
|
35 |
+
start = 0
|
36 |
+
|
37 |
+
for token in token_data:
|
38 |
+
entity_group = token["entity_group"]
|
39 |
+
word = token["word"]
|
40 |
+
tag = f"[{entity_group}]"
|
41 |
+
tag_color = tag_colors.get(entity_group, "white") # Default to white if color not found
|
42 |
+
colored_chunk = f'<span style="color:black;background-color:{tag_color}">{word} {tag}</span>'
|
43 |
+
colored_sentence += sentence[start:token["start"]] + colored_chunk
|
44 |
+
start = token["end"]
|
45 |
+
|
46 |
+
# Add the remaining part of the sentence
|
47 |
+
colored_sentence += sentence[start:]
|
48 |
+
|
49 |
+
return colored_sentence
|
50 |
+
|
51 |
+
# Define colors for the tags
|
52 |
+
tag_colors = {
|
53 |
+
"ADJP": "#0000FF", # Blue
|
54 |
+
"ADVP": "#008000", # Green
|
55 |
+
"CONJP": "#FF0000", # Red
|
56 |
+
"INTJ": "#00FFFF", # Cyan
|
57 |
+
"LST": "#FF00FF", # Magenta
|
58 |
+
"NP": "#FFFF00", # Yellow
|
59 |
+
"PP": "#800080", # Purple
|
60 |
+
"PRT": "#00008B", # Dark Blue
|
61 |
+
"SBAR": "#006400", # Dark Green
|
62 |
+
"VP": "#008B8B", # Dark Cyan
|
63 |
+
}
|
64 |
+
##################
|
65 |
+
|
66 |
+
###################
|
67 |
+
def generate_tagged_sentence(sentence, entity_tags):
|
68 |
+
# Create a list to hold the tagged tokens
|
69 |
+
tagged_tokens = []
|
70 |
+
|
71 |
+
# Process the entity tags to annotate the sentence
|
72 |
+
for tag in entity_tags:
|
73 |
+
start = tag['start']
|
74 |
+
end = tag['end']
|
75 |
+
token = sentence[start - 1:end] # Adjust for 0-based indexing
|
76 |
+
tag_name = f"[{tag['entity_group']}]"
|
77 |
+
|
78 |
+
tagged_tokens.append(f"{token} {tag_name}")
|
79 |
+
|
80 |
+
# Return the tagged sentence
|
81 |
+
return " ".join(tagged_tokens)
|
82 |
+
|
83 |
+
|
84 |
+
def replace_pp_with_pause(sentence, entity_tags):
|
85 |
+
# Create a list to hold the tagged tokens
|
86 |
+
tagged_tokens = []
|
87 |
+
|
88 |
+
# Process the entity tags to replace [PP] with [PAUSE]
|
89 |
+
for tag in entity_tags:
|
90 |
+
start = tag['start']
|
91 |
+
end = tag['end']
|
92 |
+
token = sentence[start - 1:end] # Adjust for 0-based indexing
|
93 |
+
tag_name = f"[{tag['entity_group']}]"
|
94 |
+
|
95 |
+
if tag['entity_group'] == 'PP':
|
96 |
+
# Replace [PP] with [PAUSE]
|
97 |
+
tag_name = '[PAUSE]'
|
98 |
+
else:
|
99 |
+
tag_name = ''
|
100 |
+
|
101 |
+
tagged_tokens.append(f"{token}{tag_name}")
|
102 |
+
|
103 |
+
# Return the sentence with [PAUSE] replacement
|
104 |
+
return " ".join(tagged_tokens)
|
105 |
+
|
106 |
+
|
107 |
+
def get_split_sentences(sentence, entity_tags):
|
108 |
+
split_sentences = []
|
109 |
+
|
110 |
+
# Initialize a variable to hold the current sentence
|
111 |
+
current_sentence = []
|
112 |
+
|
113 |
+
# Process the entity tags to split the sentence
|
114 |
+
for tag in entity_tags:
|
115 |
+
if tag['entity_group'] == 'PP':
|
116 |
+
start = tag['start']
|
117 |
+
end = tag['end']
|
118 |
+
token = sentence[start - 1:end] # Adjust for 0-based indexing
|
119 |
+
current_sentence.append(token)
|
120 |
+
split_sentences.append(" ".join(current_sentence))
|
121 |
+
current_sentence = [] # Reset the current sentence
|
122 |
+
else:
|
123 |
+
start = tag['start']
|
124 |
+
end = tag['end']
|
125 |
+
token = sentence[start - 1:end] # Adjust for 0-based indexing
|
126 |
+
current_sentence.append(token)
|
127 |
+
|
128 |
+
# If the sentence ends without a [PAUSE] token, add the final sentence
|
129 |
+
if current_sentence:
|
130 |
+
split_sentences.append(" ".join(current_sentence))
|
131 |
+
|
132 |
+
return split_sentences
|
133 |
+
# def get_split_sentences(sentence, entity_tags):
|
134 |
+
# split_sentences = []
|
135 |
+
|
136 |
+
# # Initialize a variable to hold the current sentence
|
137 |
+
# current_sentence = []
|
138 |
+
|
139 |
+
# # Process the entity tags to split the sentence
|
140 |
+
# for tag in entity_tags:
|
141 |
+
# if tag['entity_group'] == 'PP':
|
142 |
+
# if current_sentence:
|
143 |
+
# print(current_sentence)
|
144 |
+
# split_sentences.append(" ".join(current_sentence))
|
145 |
+
# current_sentence = [] # Reset the current sentence
|
146 |
+
# else:
|
147 |
+
# start = tag['start']
|
148 |
+
# end = tag['end']
|
149 |
+
# token = sentence[start - 1:end] # Adjust for 0-based indexing
|
150 |
+
# current_sentence.append(token)
|
151 |
+
|
152 |
+
# # If the sentence ends without a [PAUSE] token, add the final sentence
|
153 |
+
# if current_sentence:
|
154 |
+
# split_sentences.append(" ".join(current_sentence))
|
155 |
+
|
156 |
+
# return split_sentences
|
157 |
+
|
158 |
+
|
159 |
+
|
160 |
+
|
161 |
+
##################
|
162 |
+
|
163 |
+
|
164 |
+
######################################
|
165 |
+
|
166 |
+
st.set_page_config(page_title="Hallucination", layout="wide")
|
167 |
+
st.title(':blue[Sorry come again! This time slowly, please]')
|
168 |
+
st.header("Rephrasing LLM Prompts for Better Comprehension Reduces :blue[Hallucination]")
|
169 |
+
############################
|
170 |
+
video_file1 = open('machine.mp4', 'rb')
|
171 |
+
video_file2 = open('Pause 3 Out1.mp4', 'rb')
|
172 |
+
video_bytes1 = video_file1.read()
|
173 |
+
video_bytes2 = video_file2.read()
|
174 |
+
col1a, col1b = st.columns(2)
|
175 |
+
with col1a:
|
176 |
+
st.caption("Original")
|
177 |
+
st.video(video_bytes1)
|
178 |
+
with col1b:
|
179 |
+
st.caption("Paraphrased and added [PAUSE]")
|
180 |
+
st.video(video_bytes2)
|
181 |
+
#############################
|
182 |
+
HF_SPACES_API_KEY = st.secrets["HF_token"]
|
183 |
+
|
184 |
+
#API_URL = "https://api-inference.huggingface.co/models/openlm-research/open_llama_3b"
|
185 |
+
API_URL = "https://api-inference.huggingface.co/models/bigscience/bloom"
|
186 |
+
headers = {"Authorization": HF_SPACES_API_KEY}
|
187 |
+
|
188 |
+
def query(payload):
|
189 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
190 |
+
return response.json()
|
191 |
+
|
192 |
+
API_URL_chunk = "https://api-inference.huggingface.co/models/flair/chunk-english"
|
193 |
+
|
194 |
+
def query_chunk(payload):
|
195 |
+
response = requests.post(API_URL_chunk, headers=headers, json=payload)
|
196 |
+
return response.json()
|
197 |
+
|
198 |
+
|
199 |
+
|
200 |
+
from tenacity import (
|
201 |
+
retry,
|
202 |
+
stop_after_attempt,
|
203 |
+
wait_random_exponential,
|
204 |
+
) # for exponential backoff
|
205 |
+
# openai.api_key = f"{st.secrets['OpenAI_API']}"
|
206 |
+
# model_engine = "gpt-4"
|
207 |
+
# @retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(6))
|
208 |
+
# def get_answers(prompt):
|
209 |
+
# completion = openai.ChatCompletion.create(
|
210 |
+
# model = 'gpt-3.5-turbo',
|
211 |
+
# messages = [
|
212 |
+
# {'role': 'user', 'content': prompt}
|
213 |
+
# ],
|
214 |
+
# temperature = 0,max_tokens= 200,
|
215 |
+
# )
|
216 |
+
# return completion['choices'][0]['message']['content']
|
217 |
+
prompt = '''Generate a story from the given text.
|
218 |
+
Text : '''
|
219 |
+
# paraphrase_prompt = '''Rephrase the given text: '''
|
220 |
+
|
221 |
+
# _gpt3tokenizer = tiktoken.get_encoding("cl100k_base")
|
222 |
+
|
223 |
+
##########################
|
224 |
+
# def render_heatmap(original_text, importance_scores_df):
|
225 |
+
# # Extract the importance scores
|
226 |
+
# importance_values = importance_scores_df['importance_value'].values
|
227 |
+
|
228 |
+
# # Check for division by zero during normalization
|
229 |
+
# min_val = np.min(importance_values)
|
230 |
+
# max_val = np.max(importance_values)
|
231 |
+
|
232 |
+
# if max_val - min_val != 0:
|
233 |
+
# normalized_importance_values = (importance_values - min_val) / (max_val - min_val)
|
234 |
+
# else:
|
235 |
+
# normalized_importance_values = np.zeros_like(importance_values) # Fallback: all-zero array
|
236 |
+
|
237 |
+
# # Generate a colormap for the heatmap
|
238 |
+
# cmap = matplotlib.colormaps['inferno']
|
239 |
+
|
240 |
+
# # Function to determine text color based on background color
|
241 |
+
# def get_text_color(bg_color):
|
242 |
+
# brightness = 0.299 * bg_color[0] + 0.587 * bg_color[1] + 0.114 * bg_color[2]
|
243 |
+
# if brightness < 0.5:
|
244 |
+
# return 'white'
|
245 |
+
# else:
|
246 |
+
# return 'black'
|
247 |
+
|
248 |
+
# # Initialize pointers for the original text and token importance
|
249 |
+
# original_pointer = 0
|
250 |
+
# token_pointer = 0
|
251 |
+
|
252 |
+
# # Create an HTML representation
|
253 |
+
# html = ""
|
254 |
+
# while original_pointer < len(original_text):
|
255 |
+
# token = importance_scores_df.loc[token_pointer, 'token']
|
256 |
+
# if original_pointer == original_text.find(token, original_pointer):
|
257 |
+
# importance = normalized_importance_values[token_pointer]
|
258 |
+
# rgba = cmap(importance)
|
259 |
+
# bg_color = rgba[:3]
|
260 |
+
# text_color = get_text_color(bg_color)
|
261 |
+
# html += f'<span style="background-color: rgba({int(bg_color[0]*255)}, {int(bg_color[1]*255)}, {int(bg_color[2]*255)}, 1); color: {text_color};">{token}</span>'
|
262 |
+
# original_pointer += len(token)
|
263 |
+
# token_pointer += 1
|
264 |
+
# else:
|
265 |
+
# html += original_text[original_pointer]
|
266 |
+
# original_pointer += 1
|
267 |
+
|
268 |
+
# #display(HTML(html))
|
269 |
+
# st.markdown(html, unsafe_allow_html=True)
|
270 |
+
|
271 |
+
|
272 |
+
def render_heatmap(original_text, importance_scores_df):
|
273 |
+
# Extract the importance scores
|
274 |
+
importance_values = importance_scores_df['importance_value'].values
|
275 |
+
|
276 |
+
# Check for division by zero during normalization
|
277 |
+
min_val = np.min(importance_values)
|
278 |
+
max_val = np.max(importance_values)
|
279 |
+
|
280 |
+
if max_val - min_val != 0:
|
281 |
+
normalized_importance_values = (importance_values - min_val) / (max_val - min_val)
|
282 |
+
else:
|
283 |
+
normalized_importance_values = np.zeros_like(importance_values) # Fallback: all-zero array
|
284 |
+
|
285 |
+
# Generate a colormap for the heatmap (use "Blues")
|
286 |
+
cmap = matplotlib.cm.get_cmap('Blues')
|
287 |
+
|
288 |
+
# Function to determine text color based on background color
|
289 |
+
def get_text_color(bg_color):
|
290 |
+
brightness = 0.299 * bg_color[0] + 0.587 * bg_color[1] + 0.114 * bg_color[2]
|
291 |
+
if brightness < 0.5:
|
292 |
+
return 'white'
|
293 |
+
else:
|
294 |
+
return 'black'
|
295 |
+
|
296 |
+
# Initialize pointers for the original text and token importance
|
297 |
+
original_pointer = 0
|
298 |
+
token_pointer = 0
|
299 |
+
|
300 |
+
# Create an HTML representation
|
301 |
+
html = ""
|
302 |
+
while original_pointer < len(original_text):
|
303 |
+
token = importance_scores_df.loc[token_pointer, 'token']
|
304 |
+
if original_pointer == original_text.find(token, original_pointer):
|
305 |
+
importance = normalized_importance_values[token_pointer]
|
306 |
+
rgba = cmap(importance)
|
307 |
+
bg_color = rgba[:3]
|
308 |
+
text_color = get_text_color(bg_color)
|
309 |
+
html += f'<span style="background-color: rgba({int(bg_color[0]*255)}, {int(bg_color[1]*255)}, {int(bg_color[2]*255)}, 1); color: {text_color};">{token}</span>'
|
310 |
+
original_pointer += len(token)
|
311 |
+
token_pointer += 1
|
312 |
+
else:
|
313 |
+
html += original_text[original_pointer]
|
314 |
+
original_pointer += 1
|
315 |
+
|
316 |
+
st.markdown(html, unsafe_allow_html=True)
|
317 |
+
|
318 |
+
##########################
|
319 |
+
# Create selectbox
|
320 |
+
|
321 |
+
prompt_list=["Which individuals possessed the ships that were part of the Boston Tea Party?",
|
322 |
+
"Freddie Frith", "Robert used PDF for his math homework."
|
323 |
+
]
|
324 |
+
|
325 |
+
options = [f"Prompt #{i+1}: {prompt_list[i]}" for i in range(3)] + ["Another Prompt..."]
|
326 |
+
selection = st.selectbox("Choose a prompt from the dropdown below . Click on :blue['Another Prompt...'] , if you want to enter your own custom prompt.", options=options)
|
327 |
+
check=[]
|
328 |
+
# if selection == "Another Prompt...":
|
329 |
+
# otherOption = st.text_input("Enter your custom prompt...")
|
330 |
+
# if otherOption:
|
331 |
+
# st.caption(f""":white_check_mark: Your input prompt is : {otherOption}""")
|
332 |
+
# st.caption(':green[Kindly hold on for a few minutes while the AI text is being generated]')
|
333 |
+
|
334 |
+
# check=otherOption
|
335 |
+
# st.caption(f"""{check}""")
|
336 |
+
|
337 |
+
# else:
|
338 |
+
# result = re.split(r'#\d+:', selection, 1)
|
339 |
+
# if result:
|
340 |
+
# st.caption(f""":white_check_mark: Your input prompt is : {result[1]}""")
|
341 |
+
# st.caption(':green[Kindly hold on for a few minutes while the AI text is being generated]')
|
342 |
+
# check=result[1]
|
343 |
+
if selection == "Another Prompt...":
|
344 |
+
check = st.text_input("Enter your custom prompt...")
|
345 |
+
check = " " + check
|
346 |
+
if check:
|
347 |
+
st.caption(f""":white_check_mark: Your input prompt is : {check}""")
|
348 |
+
st.caption(':green[Kindly hold on for a few minutes while the AI text is being generated]')
|
349 |
+
|
350 |
+
# check=otherOption
|
351 |
+
# st.caption(f"""{check}""")
|
352 |
+
|
353 |
+
else:
|
354 |
+
check = re.split(r'#\d+:', selection, 1)[1]
|
355 |
+
if check:
|
356 |
+
st.caption(f""":white_check_mark: Your input prompt is : {check}""")
|
357 |
+
st.caption(':green[Kindly hold on for a few minutes while the AI text is being generated]')
|
358 |
+
# check=result[1]
|
359 |
+
|
360 |
+
# @st.cache_data
|
361 |
+
def load_chunk_model(check):
|
362 |
+
iden=['error']
|
363 |
+
while 'error' in iden:
|
364 |
+
time.sleep(1)
|
365 |
+
try:
|
366 |
+
output = query_chunk({"inputs": f"""{check}""",})
|
367 |
+
iden = output # Update 'check' with the new result
|
368 |
+
except Exception as e:
|
369 |
+
print(f"An exception occurred: {e}")
|
370 |
+
|
371 |
+
return output
|
372 |
+
|
373 |
+
|
374 |
+
|
375 |
+
##################################
|
376 |
+
|
377 |
+
|
378 |
+
# st.write(entity_tags)
|
379 |
+
|
380 |
+
|
381 |
+
##################################
|
382 |
+
# colored_output, _ = colorize_tokens(load_chunk_model(check),check)
|
383 |
+
# st.caption('The below :blue[NER] tags are found for orginal prompt:')
|
384 |
+
# st.markdown(colored_output, unsafe_allow_html=True)
|
385 |
+
|
386 |
+
# @st.cache_resource
|
387 |
+
def load_text_gen_model(check):
|
388 |
+
iden=['error']
|
389 |
+
while 'error' in iden:
|
390 |
+
time.sleep(1)
|
391 |
+
try:
|
392 |
+
output = query({
|
393 |
+
"inputs": f"""{check}""",
|
394 |
+
"parameters": {
|
395 |
+
"min_new_tokens": 30,
|
396 |
+
"max_new_tokens": 100,
|
397 |
+
"do_sample":True,
|
398 |
+
#"remove_invalid_values" : True
|
399 |
+
#"temperature" :0.6
|
400 |
+
# "top_k":1
|
401 |
+
# "num_beams":2,
|
402 |
+
# "no_repeat_ngram_size":2,
|
403 |
+
# "early_stopping":True
|
404 |
+
}
|
405 |
+
})
|
406 |
+
iden = output # Update 'check' with the new result
|
407 |
+
except Exception as e:
|
408 |
+
print(f"An exception occurred: {e}")
|
409 |
+
|
410 |
+
return output[0]['generated_text']
|
411 |
+
# @st.cache_data
|
412 |
+
# def load_text_gen_model(check):
|
413 |
+
# return get_answers(prompt + check)
|
414 |
+
|
415 |
+
|
416 |
+
|
417 |
+
def decoded_tokens(string, tokenizer):
|
418 |
+
return [tokenizer.decode([x]) for x in tokenizer.encode(string)]
|
419 |
+
|
420 |
+
# def analyze_heatmap(df):
|
421 |
+
# sns.set_palette(sns.color_palette("viridis"))
|
422 |
+
|
423 |
+
# # Create a copy of the DataFrame to prevent modification of the original
|
424 |
+
# df_copy = df.copy()
|
425 |
+
|
426 |
+
# # Ensure DataFrame has the required columns
|
427 |
+
# if 'token' not in df_copy.columns or 'importance_value' not in df_copy.columns:
|
428 |
+
# raise ValueError("The DataFrame must contain 'token' and 'importance_value' columns.")
|
429 |
+
|
430 |
+
# # Add 'Position' column to the DataFrame copy
|
431 |
+
# df_copy['Position'] = range(len(df_copy))
|
432 |
+
|
433 |
+
# # Plot a bar chart for importance score per token
|
434 |
+
# plt.figure(figsize=(len(df_copy) * 0.3, 4))
|
435 |
+
# sns.barplot(x='token', y='importance_value', data=df_copy)
|
436 |
+
# plt.xticks(rotation=45, ha='right')
|
437 |
+
# plt.title('Importance Score per Token')
|
438 |
+
# return plt
|
439 |
+
# #plt.show()
|
440 |
+
|
441 |
+
# ###########################
|
442 |
+
|
443 |
+
# def analyze_heatmap(df_input):
|
444 |
+
# df = df_input.copy()
|
445 |
+
# df["Position"] = range(len(df))
|
446 |
+
|
447 |
+
# # Get the viridis colormap
|
448 |
+
# viridis = matplotlib.cm.get_cmap("viridis")
|
449 |
+
# # Create a Matplotlib figure and axis
|
450 |
+
# fig, ax = plt.subplots(figsize=(10, 6))
|
451 |
+
|
452 |
+
# # Normalize the importance values
|
453 |
+
# min_val = df["importance_value"].min()
|
454 |
+
# max_val = df["importance_value"].max()
|
455 |
+
# normalized_values = (df["importance_value"] - min_val) / (max_val - min_val)
|
456 |
+
|
457 |
+
# # Create the bars, colored based on normalized importance_value
|
458 |
+
# for i, (token, norm_value) in enumerate(zip(df["token"], normalized_values)):
|
459 |
+
# color = viridis(norm_value)
|
460 |
+
# ax.bar(
|
461 |
+
# x=[i], # Use index for x-axis
|
462 |
+
# height=[df["importance_value"].iloc[i]],
|
463 |
+
# width=1.0, # Set the width to make bars touch each other
|
464 |
+
# color=[color],
|
465 |
+
# )
|
466 |
+
|
467 |
+
# # Additional styling
|
468 |
+
# ax.set_title("Importance Score per Token", size=25)
|
469 |
+
# ax.set_xlabel("Token")
|
470 |
+
# ax.set_ylabel("Importance Value")
|
471 |
+
# ax.set_xticks(range(len(df["token"])))
|
472 |
+
# ax.set_xticklabels(df["token"], rotation=45)
|
473 |
+
|
474 |
+
# return fig
|
475 |
+
@st.cache_data
|
476 |
+
def analyze_heatmap(df_input):
|
477 |
+
df = df_input.copy()
|
478 |
+
df["Position"] = range(len(df))
|
479 |
+
|
480 |
+
# Get the Blues colormap
|
481 |
+
blues = matplotlib.cm.get_cmap("Blues")
|
482 |
+
# Create a Matplotlib figure and axis
|
483 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
484 |
+
|
485 |
+
# Normalize the importance values
|
486 |
+
min_val = df["importance_value"].min()
|
487 |
+
max_val = df["importance_value"].max()
|
488 |
+
normalized_values = (df["importance_value"] - min_val) / (max_val - min_val)
|
489 |
+
|
490 |
+
# Create the bars, colored based on normalized importance_value
|
491 |
+
for i, (token, norm_value) in enumerate(zip(df["token"], normalized_values)):
|
492 |
+
color = blues(norm_value)
|
493 |
+
ax.bar(
|
494 |
+
x=[i], # Use index for x-axis
|
495 |
+
height=[df["importance_value"].iloc[i]],
|
496 |
+
width=1.0, # Set the width to make bars touch each other
|
497 |
+
color=[color],
|
498 |
+
)
|
499 |
+
|
500 |
+
# Additional styling
|
501 |
+
ax.set_title("Importance Score per Token", size=25)
|
502 |
+
ax.set_xlabel("Token")
|
503 |
+
ax.set_ylabel("Importance Value")
|
504 |
+
ax.set_xticks(range(len(df["token"])))
|
505 |
+
ax.set_xticklabels(df["token"], rotation=45)
|
506 |
+
|
507 |
+
return fig
|
508 |
+
|
509 |
+
# def analyze_heatmap(df_input):
|
510 |
+
# df = df_input.copy()
|
511 |
+
# df["Position"] = range(len(df))
|
512 |
+
|
513 |
+
# # Get the viridis colormap
|
514 |
+
# viridis = matplotlib.colormaps["viridis"]
|
515 |
+
# # Initialize the figure
|
516 |
+
# fig = go.Figure()
|
517 |
+
# # Create the histogram bars with viridis coloring
|
518 |
+
|
519 |
+
# # Normalize the importance values
|
520 |
+
# min_val = df["importance_value"].min()
|
521 |
+
# max_val = df["importance_value"].max()
|
522 |
+
# normalized_values = (df["importance_value"] - min_val) / (max_val - min_val)
|
523 |
+
# # Initialize the figure
|
524 |
+
# fig = go.Figure()
|
525 |
+
# # Create the bars, colored based on normalized importance_value
|
526 |
+
# for i, (token, norm_value) in enumerate(zip(df["token"], normalized_values)):
|
527 |
+
# color = f"rgb({int(viridis(norm_value)[0] * 255)}, {int(viridis(norm_value)[1] * 255)}, {int(viridis(norm_value)[2] * 255)})"
|
528 |
+
# fig.add_trace(
|
529 |
+
# go.Bar(
|
530 |
+
# x=[i], # Use index for x-axis
|
531 |
+
# y=[df["importance_value"].iloc[i]],
|
532 |
+
# width=1.0, # Set the width to make bars touch each other
|
533 |
+
# marker=dict(color=color),
|
534 |
+
# )
|
535 |
+
# )
|
536 |
+
# # Additional styling
|
537 |
+
# fig.update_layout(
|
538 |
+
# title=f"Importance Score per Token",
|
539 |
+
# title_font={'size': 25},
|
540 |
+
# xaxis_title="Token",
|
541 |
+
# yaxis_title="Importance Value",
|
542 |
+
# showlegend=False,
|
543 |
+
# bargap=0, # Remove gap between bars
|
544 |
+
# xaxis=dict( # Set tick labels to tokens
|
545 |
+
# tickmode="array",
|
546 |
+
# tickvals=list(range(len(df["token"]))),
|
547 |
+
# ticktext=list(df["token"]),
|
548 |
+
# ),
|
549 |
+
# )
|
550 |
+
# # Rotate x-axis labels by 45 degrees
|
551 |
+
# fig.update_xaxes(tickangle=45)
|
552 |
+
# return fig
|
553 |
+
|
554 |
+
############################
|
555 |
+
# @st.cache_data
|
556 |
+
def integrated_gradients(input_ids, baseline, model, n_steps= 10): #100
|
557 |
+
# Convert input_ids and baseline to LongTensors
|
558 |
+
input_ids = input_ids.long()
|
559 |
+
baseline = baseline.long()
|
560 |
+
|
561 |
+
# Initialize tensor to store accumulated gradients
|
562 |
+
accumulated_grads = None
|
563 |
+
|
564 |
+
# Create interpolated inputs
|
565 |
+
alphas = torch.linspace(0, 1, n_steps)
|
566 |
+
delta = input_ids - baseline
|
567 |
+
interpolates = [(baseline + (alpha * delta).long()).long() for alpha in alphas] # Explicitly cast to LongTensor
|
568 |
+
|
569 |
+
# Initialize tqdm progress bar
|
570 |
+
pbar = tqdm(total=n_steps, desc="Calculating Integrated Gradients")
|
571 |
+
|
572 |
+
for interpolate in interpolates:
|
573 |
+
|
574 |
+
# Update tqdm progress bar
|
575 |
+
pbar.update(1)
|
576 |
+
|
577 |
+
# Convert interpolated samples to embeddings
|
578 |
+
interpolate_embedding = model.transformer.wte(interpolate).clone().detach().requires_grad_(True)
|
579 |
+
|
580 |
+
# Forward pass
|
581 |
+
output = model(inputs_embeds=interpolate_embedding, output_attentions=False)[0]
|
582 |
+
|
583 |
+
# Aggregate the logits across all positions (using sum in this example)
|
584 |
+
aggregated_logit = output.sum()
|
585 |
+
|
586 |
+
# Backward pass to calculate gradients
|
587 |
+
aggregated_logit.backward()
|
588 |
+
|
589 |
+
# Accumulate gradients
|
590 |
+
if accumulated_grads is None:
|
591 |
+
accumulated_grads = interpolate_embedding.grad.clone()
|
592 |
+
else:
|
593 |
+
accumulated_grads += interpolate_embedding.grad
|
594 |
+
|
595 |
+
# Clear gradients
|
596 |
+
model.zero_grad()
|
597 |
+
interpolate_embedding.grad.zero_()
|
598 |
+
|
599 |
+
# Close tqdm progress bar
|
600 |
+
pbar.close()
|
601 |
+
|
602 |
+
# Compute average gradients
|
603 |
+
avg_grads = accumulated_grads / n_steps
|
604 |
+
|
605 |
+
# Compute attributions
|
606 |
+
with torch.no_grad():
|
607 |
+
input_embedding = model.transformer.wte(input_ids)
|
608 |
+
baseline_embedding = model.transformer.wte(baseline)
|
609 |
+
attributions = (input_embedding - baseline_embedding) * avg_grads
|
610 |
+
|
611 |
+
return attributions
|
612 |
+
# @st.cache_data
|
613 |
+
def process_integrated_gradients(input_text, _gpt2tokenizer, model):
|
614 |
+
inputs = torch.tensor([_gpt2tokenizer.encode(input_text)])
|
615 |
+
|
616 |
+
gpt2tokens = decoded_tokens(input_text, _gpt2tokenizer)
|
617 |
+
|
618 |
+
with torch.no_grad():
|
619 |
+
outputs = model(inputs, output_attentions=True, output_hidden_states=True)
|
620 |
+
|
621 |
+
attentions = outputs[-1]
|
622 |
+
|
623 |
+
# Initialize a baseline as zero tensor
|
624 |
+
baseline = torch.zeros_like(inputs).long()
|
625 |
+
|
626 |
+
# Compute Integrated Gradients targeting the aggregated sequence output
|
627 |
+
attributions = integrated_gradients(inputs, baseline, model)
|
628 |
+
|
629 |
+
# Convert tensors to numpy array for easier manipulation
|
630 |
+
attributions_np = attributions.detach().numpy().sum(axis=2)
|
631 |
+
|
632 |
+
# Sum across the embedding dimensions to get a single attribution score per token
|
633 |
+
attributions_sum = attributions.sum(axis=2).squeeze(0).detach().numpy()
|
634 |
+
|
635 |
+
l2_norm_attributions = np.linalg.norm(attributions_sum, 2)
|
636 |
+
normalized_attributions_sum = attributions_sum / l2_norm_attributions
|
637 |
+
|
638 |
+
clamped_attributions_sum = np.where(normalized_attributions_sum < 0, 0, normalized_attributions_sum)
|
639 |
+
|
640 |
+
attribution_df = pd.DataFrame({
|
641 |
+
'token': gpt2tokens,
|
642 |
+
'importance_value': clamped_attributions_sum
|
643 |
+
})
|
644 |
+
return attribution_df
|
645 |
+
########################
|
646 |
+
model_type = 'gpt2'
|
647 |
+
model_version = 'gpt2'
|
648 |
+
model = GPT2LMHeadModel.from_pretrained(model_version, output_attentions=True)
|
649 |
+
_gpt2tokenizer = tiktoken.get_encoding("gpt2")
|
650 |
+
#######################
|
651 |
+
para_tokenizer = AutoTokenizer.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base")
|
652 |
+
para_model = AutoModelForSeq2SeqLM.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base")
|
653 |
+
######################
|
654 |
+
@st.cache_resource
|
655 |
+
def paraphrase(
|
656 |
+
question,
|
657 |
+
num_beams=5,
|
658 |
+
num_beam_groups=5,
|
659 |
+
num_return_sequences=5,
|
660 |
+
repetition_penalty=10.0,
|
661 |
+
diversity_penalty=3.0,
|
662 |
+
no_repeat_ngram_size=2,
|
663 |
+
temperature=0.7,
|
664 |
+
max_length=64 #128
|
665 |
+
):
|
666 |
+
input_ids = para_tokenizer(
|
667 |
+
f'paraphrase: {question}',
|
668 |
+
return_tensors="pt", padding="longest",
|
669 |
+
max_length=max_length,
|
670 |
+
truncation=True,
|
671 |
+
).input_ids
|
672 |
+
|
673 |
+
outputs = para_model.generate(
|
674 |
+
input_ids, temperature=temperature, repetition_penalty=repetition_penalty,
|
675 |
+
num_return_sequences=num_return_sequences, no_repeat_ngram_size=no_repeat_ngram_size,
|
676 |
+
num_beams=num_beams, num_beam_groups=num_beam_groups,
|
677 |
+
max_length=max_length, diversity_penalty=diversity_penalty
|
678 |
+
)
|
679 |
+
|
680 |
+
res = para_tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
681 |
+
|
682 |
+
return res
|
683 |
+
|
684 |
+
###########################
|
685 |
+
|
686 |
+
class SentenceAnalyzer:
|
687 |
+
def __init__(self, check, original, _gpt2tokenizer, model):
|
688 |
+
self.check = check
|
689 |
+
self.original = original
|
690 |
+
self._gpt2tokenizer = _gpt2tokenizer
|
691 |
+
self.model = model
|
692 |
+
self.entity_tags = load_chunk_model(check)
|
693 |
+
self.tagged_sentence = generate_tagged_sentence(check, self.entity_tags)
|
694 |
+
self.sentence_with_pause = replace_pp_with_pause(check, self.entity_tags)
|
695 |
+
self.split_sentences = get_split_sentences(check, self.entity_tags)
|
696 |
+
self.colored_output = colorize_tokens(self.entity_tags, check)
|
697 |
+
|
698 |
+
def analyze(self):
|
699 |
+
# st.caption(f"The below :blue[shallow parsing] tags are found for {self.original} prompt:")
|
700 |
+
# st.markdown(self.colored_output, unsafe_allow_html=True)
|
701 |
+
attribution_df1 = process_integrated_gradients(self.check, self._gpt2tokenizer, self.model)
|
702 |
+
st.caption(f":blue[{self.original}]:")
|
703 |
+
render_heatmap(self.check, attribution_df1)
|
704 |
+
# st.write("Original")
|
705 |
+
st.pyplot(analyze_heatmap(attribution_df1))
|
706 |
+
# st.write("After [PAUSE]")
|
707 |
+
# st.write("Sentence with [PAUSE] Replacement:", self.sentence_with_pause)
|
708 |
+
dataframes_list = []
|
709 |
+
|
710 |
+
for i, split_sentence in enumerate(self.split_sentences):
|
711 |
+
# st.write(f"Sentence {i + 1} : {split_sentence}")
|
712 |
+
attribution_df1 = process_integrated_gradients(split_sentence, self._gpt2tokenizer, self.model)
|
713 |
+
if i < len(self.split_sentences) - 1:
|
714 |
+
# Add a row with [PAUSE] and value 0 at the end
|
715 |
+
pause_row = pd.DataFrame({'token': '[PAUSE]', 'importance_value': 0},index=[len(attribution_df1)])
|
716 |
+
attribution_df1 = pd.concat([attribution_df1,pause_row], ignore_index=True)
|
717 |
+
|
718 |
+
dataframes_list.append(attribution_df1)
|
719 |
+
|
720 |
+
# After the loop, you can concatenate the dataframes in the list if needed
|
721 |
+
if dataframes_list:
|
722 |
+
combined_dataframe = pd.concat(dataframes_list, axis=0)
|
723 |
+
combined_dataframe = combined_dataframe[combined_dataframe['token'] != " "].reset_index(drop=True)
|
724 |
+
combined_dataframe1 = combined_dataframe[combined_dataframe['token'] != "[PAUSE]"]
|
725 |
+
combined_dataframe1.reset_index(drop=True, inplace=True)
|
726 |
+
st.write(f"Sentence with [PAUSE] Replacement:")
|
727 |
+
# st.dataframe(combined_dataframe1)
|
728 |
+
render_heatmap(self.sentence_with_pause,combined_dataframe1)
|
729 |
+
# render_heatmap(self.sentence_with_pause,combined_dataframe)
|
730 |
+
st.pyplot(analyze_heatmap(combined_dataframe))
|
731 |
+
|
732 |
+
|
733 |
+
paraphrase_list=paraphrase(check)
|
734 |
+
# st.write(paraphrase_list)
|
735 |
+
######################
|
736 |
+
|
737 |
+
col1, col2 = st.columns(2)
|
738 |
+
with col1:
|
739 |
+
analyzer = SentenceAnalyzer(check, "Original Prompt", _gpt2tokenizer, model)
|
740 |
+
analyzer.analyze()
|
741 |
+
with col2:
|
742 |
+
ai_gen_text=load_text_gen_model(check)
|
743 |
+
st.caption(':blue[AI generated text by GPT4]')
|
744 |
+
st.write(ai_gen_text)
|
745 |
+
|
746 |
+
#st.markdown("""<hr style="height:5px;border:none;color:#333;background-color:#333;" /> """, unsafe_allow_html=True)
|
747 |
+
st.markdown("""<hr style="height:5px;border:none;color:lightblue;background-color:lightblue;" /> """, unsafe_allow_html=True)
|
748 |
+
|
749 |
+
|
750 |
+
col3, col4 = st.columns(2)
|
751 |
+
with col3:
|
752 |
+
analyzer = SentenceAnalyzer(" "+paraphrase_list[0], "Paraphrase 1", _gpt2tokenizer, model)
|
753 |
+
analyzer.analyze()
|
754 |
+
with col4:
|
755 |
+
ai_gen_text=load_text_gen_model(paraphrase_list[0])
|
756 |
+
st.caption(':blue[AI generated text by GPT4]')
|
757 |
+
st.write(ai_gen_text)
|
758 |
+
|
759 |
+
st.markdown("""<hr style="height:5px;border:none;color:lightblue;background-color:skyblue;" /> """, unsafe_allow_html=True)
|
760 |
+
|
761 |
+
col5, col6 = st.columns(2)
|
762 |
+
with col5:
|
763 |
+
analyzer = SentenceAnalyzer(" "+paraphrase_list[1], "Paraphrase 2", _gpt2tokenizer, model)
|
764 |
+
analyzer.analyze()
|
765 |
+
with col6:
|
766 |
+
ai_gen_text=load_text_gen_model(paraphrase_list[1])
|
767 |
+
st.caption(':blue[AI generated text by GPT4]')
|
768 |
+
st.write(ai_gen_text)
|
769 |
+
|
770 |
+
st.markdown("""<hr style="height:5px;border:none;color:lightblue;background-color:skyblue;" /> """, unsafe_allow_html=True)
|
771 |
+
|
772 |
+
col7, col8 = st.columns(2)
|
773 |
+
with col7:
|
774 |
+
analyzer = SentenceAnalyzer(" "+paraphrase_list[2], "Paraphrase 3", _gpt2tokenizer, model)
|
775 |
+
analyzer.analyze()
|
776 |
+
with col8:
|
777 |
+
ai_gen_text=load_text_gen_model(paraphrase_list[2])
|
778 |
+
st.caption(':blue[AI generated text by GPT4]')
|
779 |
+
st.write(ai_gen_text)
|
780 |
+
|
781 |
+
st.markdown("""<hr style="height:5px;border:none;color:lightblue;background-color:skyblue;" /> """, unsafe_allow_html=True)
|
782 |
+
|
783 |
+
col9, col10 = st.columns(2)
|
784 |
+
with col9:
|
785 |
+
analyzer = SentenceAnalyzer(" "+paraphrase_list[3], "Paraphrase 4", _gpt2tokenizer, model)
|
786 |
+
analyzer.analyze()
|
787 |
+
with col10:
|
788 |
+
ai_gen_text=load_text_gen_model(paraphrase_list[3])
|
789 |
+
st.caption(':blue[AI generated text by GPT4]')
|
790 |
+
st.write(ai_gen_text)
|
791 |
+
|
792 |
+
st.markdown("""<hr style="height:5px;border:none;color:lightblue;background-color:skyblue;" /> """, unsafe_allow_html=True)
|
793 |
+
|
794 |
+
col11, col12 = st.columns(2)
|
795 |
+
with col11:
|
796 |
+
analyzer = SentenceAnalyzer(" "+paraphrase_list[4], "Paraphrase 5", _gpt2tokenizer, model)
|
797 |
+
analyzer.analyze()
|
798 |
+
with col12:
|
799 |
+
ai_gen_text=load_text_gen_model(paraphrase_list[4])
|
800 |
+
st.caption(':blue[AI generated text by GPT4]')
|
801 |
+
st.write(ai_gen_text)
|
802 |
+
|
803 |
+
|